HiCervix: An Extensive Hierarchical Dataset and Benchmark for Cervical Cytology Classification

水准点(测量) 计算机科学 人工智能 细胞学 模式识别(心理学) 医学 病理 地图学 地理
作者
De Cai,Jie Chen,Junhan Zhao,Yuan Xue,Sen Yang,Wei Yuan,Min Feng,Haiyan Weng,Shuguang Liu,Yulong Peng,Junyou Zhu,Kanran Wang,Christopher R. Jackson,Hongping Tang,Junzhou Huang,Xiyue Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:4
标识
DOI:10.1109/tmi.2024.3419697
摘要

Cervical cytology is a critical screening strategy for early detection of pre-cancerous and cancerous cervical lesions. The challenge lies in accurately classifying various cervical cytology cell types. Existing automated cervical cytology methods are primarily trained on databases covering a narrow range of coarse-grained cell types, which fail to provide a comprehensive and detailed performance analysis that accurately represents real-world cytopathology conditions. To overcome these limitations, we introduce HiCervix, the most extensive, multi-center cervical cytology dataset currently available to the public. HiCervix includes 40,229 cervical cells from 4,496 whole slide images, categorized into 29 annotated classes. These classes are organized within a three-level hierarchical tree to capture fine-grained subtype information. To exploit the semantic correlation inherent in this hierarchical tree, we propose HierSwin, a hierarchical vision transformer-based classification network. HierSwin serves as a benchmark for detailed feature learning in both coarse-level and fine-level cervical cancer classification tasks. In our comprehensive experiments, HierSwin demonstrated remarkable performance, achieving 92.08% accuracy for coarse-level classification and 82.93% accuracy averaged across all three levels. When compared to board-certified cytopathologists, HierSwin achieved high classification performance (0.8293 versus 0.7359 averaged accuracy), highlighting its potential for clinical applications. This newly released HiCervix dataset, along with our benchmark HierSwin method, is poised to make a substantial impact on the advancement of deep learning algorithms for rapid cervical cancer screening and greatly improve cancer prevention and patient outcomes in real-world clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
njc大魔王完成签到,获得积分10
3秒前
爆米花应助小杨同学采纳,获得10
3秒前
gms完成签到,获得积分10
4秒前
小鱼马完成签到,获得积分10
9秒前
chai发布了新的文献求助10
10秒前
11秒前
尉迟明风完成签到 ,获得积分10
11秒前
子车采蓝发布了新的文献求助10
12秒前
勤劳的筝完成签到,获得积分10
12秒前
SJ给SJ的求助进行了留言
12秒前
CipherSage应助Wei采纳,获得10
14秒前
SYLH应助Jackcaosky采纳,获得10
14秒前
lileilei完成签到,获得积分10
14秒前
小肥鱼完成签到,获得积分10
14秒前
14秒前
深情安青应助lin采纳,获得10
15秒前
旺仔小秃头完成签到,获得积分10
15秒前
16秒前
Navial30发布了新的文献求助100
17秒前
小二郎应助hizj采纳,获得10
18秒前
19秒前
薄桉发布了新的文献求助10
19秒前
科研通AI5应助chai采纳,获得10
20秒前
宋美美完成签到,获得积分10
20秒前
苯二氮卓发布了新的文献求助10
20秒前
宝宝巴士驾驶员完成签到,获得积分10
20秒前
小蘑菇应助sun707433743采纳,获得10
20秒前
21秒前
欢呼的谷兰完成签到,获得积分10
21秒前
林钟望完成签到,获得积分10
21秒前
24秒前
zhangyanxi完成签到,获得积分20
24秒前
aaaaa完成签到,获得积分10
24秒前
文献狂人完成签到,获得积分10
25秒前
亦晴发布了新的文献求助10
26秒前
26秒前
26秒前
11发布了新的文献求助10
27秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812690
求助须知:如何正确求助?哪些是违规求助? 3357256
关于积分的说明 10385522
捐赠科研通 3074464
什么是DOI,文献DOI怎么找? 1688791
邀请新用户注册赠送积分活动 812346
科研通“疑难数据库(出版商)”最低求助积分说明 767006