发光
纳米复合材料
碳纤维
材料科学
对偶(语法数字)
纳米技术
光电子学
分析化学(期刊)
化学
环境化学
复合材料
艺术
文学类
复合数
作者
Rui Li,Xiaoyi Wu,Yeqing Chen,Qingguang Zeng,Tingting Deng,Ting Yu
出处
期刊:ACS applied nano materials
[American Chemical Society]
日期:2024-06-25
卷期号:7 (13): 15288-15297
标识
DOI:10.1021/acsanm.4c02103
摘要
In recent years, the pursuit of luminescent thermometer probes with low cost and high sensitivity has become a significant research challenge. This work proposes a strategy that employs lanthanide ions and carbon dots with dual-emission with diverse temperature dependencies to achieve high-temperature sensitivity. Specifically, the fabrication of dual-activated temperature probes has been achieved using NaMgF3:Eu3+/carbon dot nanocomposites through a simple coprecipitation process at room temperature. The optical temperature sensor, NaMgF3:Eu3+/carbon dot, was developed using Eu3+ emission as an internal standard and carbon dot as the temperature signal. The sensor exhibits a substantial absolute sensitivity of 8.3 ± 0.2%K–1 and a relative sensitivity of 2.0 ± 0.1%K–1, both at 300 K, making it a promising candidate for physiological thermometry. Within the temperature range of 300–440 K, the NaMgF3:Eu3+/carbon dot probe shows a relative sensitivity of better than 1.0%K–1 with good excellent repeatability as well as a nearly linear relationship between the Commission Internationale de l'Echlairage chromaticity coordinates of the observed fluorescent color change. The feasibility of the proposed strategy has also been verified by modifying lanthanide ions, e.g., Tb3+. It is anticipated that this pilot study will serve as a springboard for research on dual-mode nanothermometers with superior ratiometric and colorimetric performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI