Tackling the small data problem in medical image classification with artificial intelligence: a systematic review

计算机科学 过度拟合 概化理论 范围(计算机科学) 稀缺 人工智能 机器学习 数据挖掘 数据科学 心理学 人工神经网络 发展心理学 经济 微观经济学 程序设计语言
作者
Stefano Piffer,Leonardo Ubaldi,Sabina Tangaro,Alessandra Retico,C. Talamonti
出处
期刊:Progress in Biomedical Engineering 卷期号:6 (3): 032001-032001 被引量:2
标识
DOI:10.1088/2516-1091/ad525b
摘要

Abstract Though medical imaging has seen a growing interest in AI research, training models require a large amount of data. In this domain, there are limited sets of data available as collecting new data is either not feasible or requires burdensome resources. Researchers are facing with the problem of small datasets and have to apply tricks to fight overfitting. 147 peer-reviewed articles were retrieved from PubMed, published in English, up until 31 July 2022 and articles were assessed by two independent reviewers. We followed the Preferred Reporting Items for Systematic reviews and Meta-Analyse (PRISMA) guidelines for the paper selection and 77 studies were regarded as eligible for the scope of this review. Adherence to reporting standards was assessed by using TRIPOD statement (transparent reporting of a multivariable prediction model for individual prognosis or diagnosis). To solve the small data issue transfer learning technique, basic data augmentation and generative adversarial network were applied in 75%, 69% and 14% of cases, respectively. More than 60% of the authors performed a binary classification given the data scarcity and the difficulty of the tasks. Concerning generalizability, only four studies explicitly stated an external validation of the developed model was carried out. Full access to all datasets and code was severely limited (unavailable in more than 80% of studies). Adherence to reporting standards was suboptimal (<50% adherence for 13 of 37 TRIPOD items). The goal of this review is to provide a comprehensive survey of recent advancements in dealing with small medical images samples size. Transparency and improve quality in publications as well as follow existing reporting standards are also supported.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学好久完成签到 ,获得积分10
刚刚
a24017完成签到,获得积分10
3秒前
YG完成签到,获得积分10
4秒前
yue完成签到,获得积分10
8秒前
淼队完成签到,获得积分10
9秒前
9秒前
落叶解三秋完成签到,获得积分10
10秒前
Crystal完成签到 ,获得积分10
13秒前
小小酥完成签到,获得积分10
13秒前
等待蚂蚁完成签到 ,获得积分10
14秒前
zgt01发布了新的文献求助10
14秒前
心心完成签到 ,获得积分10
15秒前
123完成签到,获得积分10
16秒前
温超完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
18秒前
Menta1y完成签到,获得积分10
18秒前
czzlancer完成签到,获得积分10
19秒前
汶溢完成签到,获得积分10
19秒前
xsss完成签到,获得积分10
20秒前
TAN完成签到,获得积分10
20秒前
通通通发布了新的文献求助10
21秒前
liudw完成签到,获得积分10
21秒前
丹丹子完成签到 ,获得积分10
22秒前
时光完成签到,获得积分10
22秒前
23秒前
充电宝应助vsvsgo采纳,获得10
25秒前
123完成签到 ,获得积分10
27秒前
Ammr完成签到 ,获得积分10
27秒前
无限的依波完成签到,获得积分10
27秒前
姽婳wy发布了新的文献求助10
28秒前
lemon完成签到,获得积分10
28秒前
传奇3应助duckspy采纳,获得30
29秒前
陈木木完成签到,获得积分10
30秒前
可可西里完成签到,获得积分10
31秒前
奋斗蜗牛完成签到,获得积分10
31秒前
CipherSage应助眼睛大的擎苍采纳,获得10
31秒前
打打应助小小酥采纳,获得10
32秒前
fox完成签到 ,获得积分10
32秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038235
求助须知:如何正确求助?哪些是违规求助? 3575992
关于积分的说明 11374009
捐赠科研通 3305760
什么是DOI,文献DOI怎么找? 1819276
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022