Tackling the small data problem in medical image classification with artificial intelligence: a systematic review

计算机科学 过度拟合 概化理论 范围(计算机科学) 稀缺 人工智能 机器学习 数据挖掘 数据科学 心理学 人工神经网络 发展心理学 经济 微观经济学 程序设计语言
作者
Stefano Piffer,Leonardo Ubaldi,Sabina Tangaro,Alessandra Retico,C. Talamonti
出处
期刊:Progress in Biomedical Engineering 卷期号:6 (3): 032001-032001 被引量:2
标识
DOI:10.1088/2516-1091/ad525b
摘要

Abstract Though medical imaging has seen a growing interest in AI research, training models require a large amount of data. In this domain, there are limited sets of data available as collecting new data is either not feasible or requires burdensome resources. Researchers are facing with the problem of small datasets and have to apply tricks to fight overfitting. 147 peer-reviewed articles were retrieved from PubMed, published in English, up until 31 July 2022 and articles were assessed by two independent reviewers. We followed the Preferred Reporting Items for Systematic reviews and Meta-Analyse (PRISMA) guidelines for the paper selection and 77 studies were regarded as eligible for the scope of this review. Adherence to reporting standards was assessed by using TRIPOD statement (transparent reporting of a multivariable prediction model for individual prognosis or diagnosis). To solve the small data issue transfer learning technique, basic data augmentation and generative adversarial network were applied in 75%, 69% and 14% of cases, respectively. More than 60% of the authors performed a binary classification given the data scarcity and the difficulty of the tasks. Concerning generalizability, only four studies explicitly stated an external validation of the developed model was carried out. Full access to all datasets and code was severely limited (unavailable in more than 80% of studies). Adherence to reporting standards was suboptimal (<50% adherence for 13 of 37 TRIPOD items). The goal of this review is to provide a comprehensive survey of recent advancements in dealing with small medical images samples size. Transparency and improve quality in publications as well as follow existing reporting standards are also supported.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaofeixia完成签到 ,获得积分10
刚刚
随便起个名完成签到,获得积分10
2秒前
HH完成签到,获得积分10
2秒前
chris完成签到,获得积分10
2秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得150
3秒前
FashionBoy应助科研通管家采纳,获得30
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得150
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
美丽人生完成签到 ,获得积分10
4秒前
雨后完成签到 ,获得积分10
6秒前
Augenstern完成签到,获得积分10
6秒前
溆玉碎兰笑完成签到 ,获得积分10
8秒前
李大胖胖完成签到 ,获得积分10
8秒前
Edou完成签到 ,获得积分10
8秒前
2275523154完成签到,获得积分10
9秒前
豆浆来点蒜泥完成签到,获得积分10
10秒前
简单完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助150
13秒前
nan完成签到,获得积分10
13秒前
Hh完成签到,获得积分10
15秒前
sun完成签到,获得积分10
19秒前
完美世界应助plateauman采纳,获得10
19秒前
嘟嘟豆806完成签到 ,获得积分10
19秒前
freeway完成签到,获得积分10
20秒前
辛勤谷雪完成签到,获得积分10
22秒前
清脆的秋寒完成签到,获得积分10
22秒前
傅家庆完成签到 ,获得积分10
22秒前
yziy完成签到 ,获得积分10
23秒前
现代大神完成签到,获得积分10
28秒前
zy完成签到 ,获得积分10
28秒前
komorebi完成签到 ,获得积分10
29秒前
量子星尘发布了新的文献求助10
29秒前
小龙完成签到 ,获得积分10
33秒前
35秒前
37秒前
aaaa完成签到 ,获得积分10
37秒前
梅特卡夫完成签到,获得积分10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5093339
求助须知:如何正确求助?哪些是违规求助? 4306976
关于积分的说明 13417433
捐赠科研通 4133171
什么是DOI,文献DOI怎么找? 2264356
邀请新用户注册赠送积分活动 1268004
关于科研通互助平台的介绍 1203813