Tackling the small data problem in medical image classification with artificial intelligence: a systematic review

计算机科学 过度拟合 概化理论 范围(计算机科学) 稀缺 人工智能 机器学习 数据挖掘 数据科学 心理学 人工神经网络 发展心理学 经济 微观经济学 程序设计语言
作者
Stefano Piffer,Leonardo Ubaldi,Sabina Tangaro,Alessandra Retico,C. Talamonti
出处
期刊:Progress in Biomedical Engineering 卷期号:6 (3): 032001-032001 被引量:2
标识
DOI:10.1088/2516-1091/ad525b
摘要

Abstract Though medical imaging has seen a growing interest in AI research, training models require a large amount of data. In this domain, there are limited sets of data available as collecting new data is either not feasible or requires burdensome resources. Researchers are facing with the problem of small datasets and have to apply tricks to fight overfitting. 147 peer-reviewed articles were retrieved from PubMed, published in English, up until 31 July 2022 and articles were assessed by two independent reviewers. We followed the Preferred Reporting Items for Systematic reviews and Meta-Analyse (PRISMA) guidelines for the paper selection and 77 studies were regarded as eligible for the scope of this review. Adherence to reporting standards was assessed by using TRIPOD statement (transparent reporting of a multivariable prediction model for individual prognosis or diagnosis). To solve the small data issue transfer learning technique, basic data augmentation and generative adversarial network were applied in 75%, 69% and 14% of cases, respectively. More than 60% of the authors performed a binary classification given the data scarcity and the difficulty of the tasks. Concerning generalizability, only four studies explicitly stated an external validation of the developed model was carried out. Full access to all datasets and code was severely limited (unavailable in more than 80% of studies). Adherence to reporting standards was suboptimal (<50% adherence for 13 of 37 TRIPOD items). The goal of this review is to provide a comprehensive survey of recent advancements in dealing with small medical images samples size. Transparency and improve quality in publications as well as follow existing reporting standards are also supported.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玛卡巴卡发布了新的文献求助10
刚刚
咻咻发布了新的文献求助20
1秒前
1秒前
范冰冰发布了新的文献求助10
1秒前
邢文瑞完成签到,获得积分10
1秒前
搜集达人应助俭朴的乐巧采纳,获得10
1秒前
2秒前
斯文败类应助零零采纳,获得10
2秒前
星辰大海应助辣目童子采纳,获得10
2秒前
仿生人发布了新的文献求助10
3秒前
4秒前
囿于昼夜完成签到,获得积分10
5秒前
5秒前
邢文瑞发布了新的文献求助10
5秒前
6秒前
Orange应助橙子采纳,获得10
6秒前
ED应助坚定的语芙采纳,获得10
7秒前
7秒前
lzx应助小猛人采纳,获得50
7秒前
霏166发布了新的文献求助10
8秒前
9秒前
9秒前
dxk发布了新的文献求助10
10秒前
ding应助Hexagram采纳,获得10
10秒前
欢呼寒珊完成签到,获得积分10
11秒前
卡卡西应助glanceofwind采纳,获得20
11秒前
ss完成签到,获得积分10
11秒前
FashionBoy应助Cool采纳,获得10
11秒前
刺1656发布了新的文献求助10
12秒前
炙热雅琴发布了新的文献求助10
13秒前
大大大长腿完成签到,获得积分10
15秒前
Pepsi完成签到,获得积分10
15秒前
xuliangzheng完成签到,获得积分20
16秒前
量子星尘发布了新的文献求助10
16秒前
华仔应助wgr采纳,获得10
16秒前
17秒前
萧凌翠完成签到,获得积分20
18秒前
dxk完成签到,获得积分20
20秒前
22秒前
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976058
求助须知:如何正确求助?哪些是违规求助? 3520294
关于积分的说明 11202245
捐赠科研通 3256804
什么是DOI,文献DOI怎么找? 1798471
邀请新用户注册赠送积分活动 877610
科研通“疑难数据库(出版商)”最低求助积分说明 806496