Tackling the small data problem in medical image classification with artificial intelligence: a systematic review

计算机科学 过度拟合 概化理论 范围(计算机科学) 稀缺 人工智能 机器学习 数据挖掘 数据科学 心理学 人工神经网络 发展心理学 微观经济学 经济 程序设计语言
作者
Stefano Piffer,Leonardo Ubaldi,Sabina Tangaro,Alessandra Retico,C. Talamonti
出处
期刊:Progress in Biomedical Engineering 卷期号:6 (3): 032001-032001 被引量:2
标识
DOI:10.1088/2516-1091/ad525b
摘要

Abstract Though medical imaging has seen a growing interest in AI research, training models require a large amount of data. In this domain, there are limited sets of data available as collecting new data is either not feasible or requires burdensome resources. Researchers are facing with the problem of small datasets and have to apply tricks to fight overfitting. 147 peer-reviewed articles were retrieved from PubMed, published in English, up until 31 July 2022 and articles were assessed by two independent reviewers. We followed the Preferred Reporting Items for Systematic reviews and Meta-Analyse (PRISMA) guidelines for the paper selection and 77 studies were regarded as eligible for the scope of this review. Adherence to reporting standards was assessed by using TRIPOD statement (transparent reporting of a multivariable prediction model for individual prognosis or diagnosis). To solve the small data issue transfer learning technique, basic data augmentation and generative adversarial network were applied in 75%, 69% and 14% of cases, respectively. More than 60% of the authors performed a binary classification given the data scarcity and the difficulty of the tasks. Concerning generalizability, only four studies explicitly stated an external validation of the developed model was carried out. Full access to all datasets and code was severely limited (unavailable in more than 80% of studies). Adherence to reporting standards was suboptimal (<50% adherence for 13 of 37 TRIPOD items). The goal of this review is to provide a comprehensive survey of recent advancements in dealing with small medical images samples size. Transparency and improve quality in publications as well as follow existing reporting standards are also supported.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Foura发布了新的文献求助10
3秒前
iNk应助wodetaiyangLLL采纳,获得10
3秒前
3秒前
4秒前
领导范儿应助jovrtic采纳,获得10
4秒前
4秒前
所所应助初空月儿采纳,获得10
4秒前
5秒前
888886kn发布了新的文献求助10
7秒前
不动僧完成签到,获得积分10
8秒前
王宇涵发布了新的文献求助10
8秒前
xiong完成签到 ,获得积分10
9秒前
思维发布了新的文献求助10
11秒前
一条鱼完成签到 ,获得积分10
12秒前
高大凌寒应助科研通管家采纳,获得10
12秒前
CipherSage应助科研通管家采纳,获得20
12秒前
打打应助科研通管家采纳,获得10
12秒前
小马甲应助科研通管家采纳,获得10
12秒前
Mutsu应助科研通管家采纳,获得20
12秒前
星辰大海应助科研通管家采纳,获得30
13秒前
隐形曼青应助科研通管家采纳,获得10
13秒前
13秒前
汉堡包应助科研通管家采纳,获得10
13秒前
13秒前
爆米花应助科研通管家采纳,获得10
13秒前
13秒前
上官若男应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
在水一方应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
顺利的绿柏完成签到,获得积分10
14秒前
完美世界应助顽主采纳,获得10
15秒前
bk2020113458完成签到,获得积分10
15秒前
青柠完成签到,获得积分10
16秒前
传奇3应助王宇涵采纳,获得10
16秒前
Riman完成签到,获得积分10
17秒前
17秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165286
求助须知:如何正确求助?哪些是违规求助? 2816322
关于积分的说明 7912245
捐赠科研通 2475959
什么是DOI,文献DOI怎么找? 1318465
科研通“疑难数据库(出版商)”最低求助积分说明 632171
版权声明 602388