亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Incremental registration towards large-scale heterogeneous point clouds by hierarchical graph matching

点云 匹配(统计) 计算机科学 比例(比率) 图形 点(几何) 人工智能 数据挖掘 理论计算机科学 地理 地图学 数学 统计 几何学
作者
Shoujun Jia,Chun Liu,Hangbin Wu,Weihua Huan,Shufan Wang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:213: 87-106 被引量:1
标识
DOI:10.1016/j.isprsjprs.2024.05.017
摘要

The increasing availability of point cloud acquisition techniques makes it possible to significantly increase 3D observation capacity by the registration of multi-sensor, multi-platform, and multi-temporal point clouds. However, there are geometric heterogeneities (point density variations and point distribution differences), small overlaps (30 % ∼ 50 %), and large data amounts (a few millions) among these large-scale heterogeneous point clouds, which pose great challenges for effective and efficient registration. In this paper, considering the structural representation capacity of graph model, we propose an incremental registration method for large-scale heterogeneous point clouds by hierarchical graph matching. More specifically, we first construct a novel graph model to discriminatively and robustly represent heterogeneous point clouds. In addition to conventional nodes and edges, our graph model particularly designs discriminative and robust feature descriptors for local node description and captures spatial relationships from both locations and orientations for global edge description. We further devise a matching strategy to accurately estimate node matches for our graph models with partial even small overlaps. This effectiveness benefits from the comprehensiveness of node and edge dissimilarities and the constraint of geometric consistency in the optimization objective. On this basis, we design a coarse-to-fine registration framework for effective and efficient point cloud registration. In this incremental framework, graph matching is hierarchically utilized to achieve sparse-to-dense point matching by global extraction and local propagation, which provides dense correspondences for robust coarse registration and predicts overlap ratio for accurate fine registration, and also avoids huge computation costs for large-scale point clouds. Extensive experiments on one benchmark and three changing self-built datasets with large scales, outliers, changing densities, and small overlaps show the excellent transformation and correspondence accuracies of our registration method for large-scale heterogeneous point clouds. Compared to the state-of-the-art methods (i.e., TrimICP, CoBigICP, GROR, VPFBR, DPCR, and PRR), our registration method performs approximate even higher efficiency while achieves an improvement of 33 % − 88 % regarding registration accuracy (OE).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
19秒前
小圆圈发布了新的文献求助30
28秒前
兴奋的宛亦完成签到,获得积分20
38秒前
zhanglongfei发布了新的文献求助10
49秒前
51秒前
小圆圈发布了新的文献求助10
51秒前
1分钟前
小圆圈发布了新的文献求助10
1分钟前
李健的小迷弟应助小圆圈采纳,获得10
1分钟前
1分钟前
冬瓜排骨养生汤完成签到,获得积分10
1分钟前
2分钟前
小圆圈发布了新的文献求助10
2分钟前
vantie完成签到 ,获得积分10
2分钟前
3分钟前
zhanglongfei完成签到,获得积分10
3分钟前
Luis发布了新的文献求助10
3分钟前
5分钟前
5分钟前
北陆玄枵发布了新的文献求助10
5分钟前
5分钟前
6分钟前
6分钟前
6分钟前
Dan完成签到,获得积分10
6分钟前
6分钟前
lcs完成签到,获得积分10
6分钟前
7分钟前
Owen应助lucky采纳,获得10
7分钟前
lucky完成签到,获得积分20
7分钟前
7分钟前
lucky发布了新的文献求助10
7分钟前
HHW完成签到,获得积分10
8分钟前
慕青应助tangyuan采纳,获得10
8分钟前
8分钟前
9分钟前
tangyuan发布了新的文献求助10
9分钟前
kokocrl完成签到,获得积分10
9分钟前
棉花糖猫弦完成签到 ,获得积分0
9分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150609
求助须知:如何正确求助?哪些是违规求助? 2802008
关于积分的说明 7846050
捐赠科研通 2459372
什么是DOI,文献DOI怎么找? 1309219
科研通“疑难数据库(出版商)”最低求助积分说明 628696
版权声明 601757