已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Privacy-preserving blockchain-based federated learning for brain tumor segmentation

计算机科学 遮罩(插图) 数据共享 块链 人工智能 异步通信 信息隐私 医疗保健 分割 质量(理念) 机器学习 计算机安全 计算机网络 医学 艺术 哲学 替代医学 认识论 病理 经济 视觉艺术 经济增长
作者
Rajesh Kumar,Cobbinah M. Bernard,Aman Ullah,Riaz Ullah Khan,Jay Kumar,Delanyo Kwame Bensah Kulevome,Yunbo Rao,Shaoning Zeng
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:177: 108646-108646 被引量:6
标识
DOI:10.1016/j.compbiomed.2024.108646
摘要

Improved data sharing between healthcare providers can lead to a higher probability of accurate diagnosis, more effective treatments, and enhanced capabilities of healthcare organizations. One critical area of focus is brain tumor segmentation, a complex task due to the heterogeneous appearance, irregular shape, and variable location of tumors. Accurate segmentation is essential for proper diagnosis and effective treatment planning, yet current techniques often fall short due to these complexities. However, the sensitive nature of health data often prohibits its sharing. Moreover, the healthcare industry faces significant issues, including preserving the privacy of the model and instilling trust in the model. This paper proposes a framework to address these privacy and trust issues by introducing a mechanism for training the global model using federated learning and sharing the encrypted learned parameters via a permissioned blockchain. The blockchain-federated learning algorithm we designed aggregates gradients in the permissioned blockchain to decentralize the global model, while the introduced masking approach retains the privacy of the model parameters. Unlike traditional raw data sharing, this approach enables hospitals or medical research centers to contribute to a globally learned model, thereby enhancing the performance of the central model for all participating medical entities. As a result, the global model can learn about several specific diseases and benefit each contributor with new disease diagnosis tasks, leading to improved treatment options. The proposed algorithm ensures the quality of model data when aggregating the local model, using an asynchronous federated learning procedure to evaluate the shared model's quality. The experimental results demonstrate the efficacy of the proposed scheme for the critical and challenging task of brain tumor segmentation. Specifically, our method achieved a 1.99% improvement in Dice similarity coefficient for enhancing tumors and a 19.08% reduction in Hausdorff distance for whole tumors compared to the baseline methods, highlighting the significant advancement in segmentation performance and reliability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
bingyu306完成签到,获得积分10
1秒前
勤奋的越彬完成签到 ,获得积分10
2秒前
YOKI关注了科研通微信公众号
3秒前
yan发布了新的文献求助10
3秒前
周美言发布了新的文献求助10
4秒前
乐空思应助高挑的小虾米采纳,获得30
5秒前
归尘应助流浪采纳,获得30
5秒前
5秒前
ASHUN完成签到,获得积分10
7秒前
眼睛大的松鼠完成签到,获得积分10
7秒前
俭朴的台灯完成签到,获得积分20
9秒前
清秀青荷完成签到,获得积分10
9秒前
黑米粥发布了新的文献求助30
9秒前
桐桐应助potato511采纳,获得10
10秒前
10秒前
科目三应助周美言采纳,获得10
11秒前
11秒前
11秒前
甜甜正豪完成签到,获得积分10
14秒前
可爱的函函应助张泽林采纳,获得10
15秒前
乐乐应助张泽林采纳,获得10
15秒前
无花果应助mangata采纳,获得10
15秒前
善良的香菇完成签到,获得积分10
16秒前
111231发布了新的文献求助10
16秒前
laicai发布了新的文献求助10
16秒前
喵了个咪发布了新的文献求助10
17秒前
18秒前
江凡儿完成签到,获得积分10
18秒前
18秒前
黑米粥发布了新的文献求助10
19秒前
小蘑菇应助小赐采纳,获得10
20秒前
优卡斯签约钓手完成签到,获得积分10
21秒前
21秒前
22秒前
22秒前
传奇3应助眼睛大的松鼠采纳,获得10
22秒前
22秒前
23秒前
wentao发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602914
求助须知:如何正确求助?哪些是违规求助? 4688078
关于积分的说明 14852337
捐赠科研通 4686316
什么是DOI,文献DOI怎么找? 2540294
邀请新用户注册赠送积分活动 1506884
关于科研通互助平台的介绍 1471458