Privacy-preserving blockchain-based federated learning for brain tumor segmentation

计算机科学 遮罩(插图) 数据共享 块链 人工智能 异步通信 信息隐私 医疗保健 分割 质量(理念) 机器学习 计算机安全 计算机网络 医学 艺术 哲学 替代医学 认识论 病理 经济 视觉艺术 经济增长
作者
Rajesh Kumar,Cobbinah M. Bernard,Aman Ullah,Riaz Ullah Khan,Jay Kumar,Delanyo Kwame Bensah Kulevome,Yunbo Rao,Shaoning Zeng
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:177: 108646-108646 被引量:6
标识
DOI:10.1016/j.compbiomed.2024.108646
摘要

Improved data sharing between healthcare providers can lead to a higher probability of accurate diagnosis, more effective treatments, and enhanced capabilities of healthcare organizations. One critical area of focus is brain tumor segmentation, a complex task due to the heterogeneous appearance, irregular shape, and variable location of tumors. Accurate segmentation is essential for proper diagnosis and effective treatment planning, yet current techniques often fall short due to these complexities. However, the sensitive nature of health data often prohibits its sharing. Moreover, the healthcare industry faces significant issues, including preserving the privacy of the model and instilling trust in the model. This paper proposes a framework to address these privacy and trust issues by introducing a mechanism for training the global model using federated learning and sharing the encrypted learned parameters via a permissioned blockchain. The blockchain-federated learning algorithm we designed aggregates gradients in the permissioned blockchain to decentralize the global model, while the introduced masking approach retains the privacy of the model parameters. Unlike traditional raw data sharing, this approach enables hospitals or medical research centers to contribute to a globally learned model, thereby enhancing the performance of the central model for all participating medical entities. As a result, the global model can learn about several specific diseases and benefit each contributor with new disease diagnosis tasks, leading to improved treatment options. The proposed algorithm ensures the quality of model data when aggregating the local model, using an asynchronous federated learning procedure to evaluate the shared model's quality. The experimental results demonstrate the efficacy of the proposed scheme for the critical and challenging task of brain tumor segmentation. Specifically, our method achieved a 1.99% improvement in Dice similarity coefficient for enhancing tumors and a 19.08% reduction in Hausdorff distance for whole tumors compared to the baseline methods, highlighting the significant advancement in segmentation performance and reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助科研通管家采纳,获得10
刚刚
斯文败类应助科研通管家采纳,获得10
刚刚
科目三应助科研通管家采纳,获得10
刚刚
ybigwhite应助科研通管家采纳,获得10
刚刚
思源应助科研通管家采纳,获得10
刚刚
脑洞疼应助科研通管家采纳,获得10
刚刚
ding应助科研通管家采纳,获得10
刚刚
传奇3应助科研通管家采纳,获得10
刚刚
小登有点der完成签到,获得积分10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
xzy998应助科研通管家采纳,获得30
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得30
1秒前
Orange应助科研通管家采纳,获得10
1秒前
1秒前
2秒前
2秒前
lll完成签到,获得积分10
4秒前
平常囧完成签到,获得积分10
5秒前
Ariaxin发布了新的文献求助30
5秒前
5秒前
科目三应助李昆朋采纳,获得30
6秒前
深情安青应助王赟晖采纳,获得10
7秒前
马腾龙发布了新的文献求助10
7秒前
shauiluo完成签到,获得积分10
7秒前
goldNAN发布了新的文献求助10
8秒前
深情安青应助甜甜的平蓝采纳,获得10
9秒前
无语的蛋堡完成签到,获得积分10
11秒前
13秒前
13秒前
英姑应助zhaoht采纳,获得10
13秒前
特安谭完成签到,获得积分10
13秒前
哎亚亚完成签到,获得积分10
13秒前
14秒前
15秒前
16秒前
16秒前
RONG完成签到,获得积分10
18秒前
王赟晖发布了新的文献求助10
18秒前
18秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5143861
求助须知:如何正确求助?哪些是违规求助? 4341664
关于积分的说明 13521235
捐赠科研通 4182119
什么是DOI,文献DOI怎么找? 2293295
邀请新用户注册赠送积分活动 1293823
关于科研通互助平台的介绍 1236563