Privacy-preserving blockchain-based federated learning for brain tumor segmentation

计算机科学 遮罩(插图) 数据共享 块链 人工智能 异步通信 信息隐私 医疗保健 分割 质量(理念) 机器学习 计算机安全 计算机网络 医学 病理 视觉艺术 艺术 哲学 经济 替代医学 认识论 经济增长
作者
Rajesh Kumar,Cobbinah M. Bernard,Aman Ullah,Riaz Ullah Khan,Jay Kumar,Delanyo Kwame Bensah Kulevome,Yunbo Rao,Shaoning Zeng
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:177: 108646-108646 被引量:6
标识
DOI:10.1016/j.compbiomed.2024.108646
摘要

Improved data sharing between healthcare providers can lead to a higher probability of accurate diagnosis, more effective treatments, and enhanced capabilities of healthcare organizations. One critical area of focus is brain tumor segmentation, a complex task due to the heterogeneous appearance, irregular shape, and variable location of tumors. Accurate segmentation is essential for proper diagnosis and effective treatment planning, yet current techniques often fall short due to these complexities. However, the sensitive nature of health data often prohibits its sharing. Moreover, the healthcare industry faces significant issues, including preserving the privacy of the model and instilling trust in the model. This paper proposes a framework to address these privacy and trust issues by introducing a mechanism for training the global model using federated learning and sharing the encrypted learned parameters via a permissioned blockchain. The blockchain-federated learning algorithm we designed aggregates gradients in the permissioned blockchain to decentralize the global model, while the introduced masking approach retains the privacy of the model parameters. Unlike traditional raw data sharing, this approach enables hospitals or medical research centers to contribute to a globally learned model, thereby enhancing the performance of the central model for all participating medical entities. As a result, the global model can learn about several specific diseases and benefit each contributor with new disease diagnosis tasks, leading to improved treatment options. The proposed algorithm ensures the quality of model data when aggregating the local model, using an asynchronous federated learning procedure to evaluate the shared model's quality. The experimental results demonstrate the efficacy of the proposed scheme for the critical and challenging task of brain tumor segmentation. Specifically, our method achieved a 1.99% improvement in Dice similarity coefficient for enhancing tumors and a 19.08% reduction in Hausdorff distance for whole tumors compared to the baseline methods, highlighting the significant advancement in segmentation performance and reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉默的半凡完成签到,获得积分10
刚刚
忧伤的映阳完成签到,获得积分10
1秒前
amanda完成签到 ,获得积分10
1秒前
ding应助岁岁平安采纳,获得10
1秒前
2秒前
CL完成签到,获得积分10
2秒前
有为完成签到,获得积分10
3秒前
Yuan完成签到 ,获得积分10
3秒前
要减肥冰菱完成签到,获得积分10
4秒前
Rondab应助hutu采纳,获得10
4秒前
Rondab应助hutu采纳,获得10
4秒前
Rondab应助hutu采纳,获得10
4秒前
XoXo完成签到,获得积分10
4秒前
Rondab应助hutu采纳,获得10
5秒前
于是完成签到,获得积分10
5秒前
岩下松风完成签到,获得积分10
6秒前
7秒前
不攻自破发布了新的文献求助10
7秒前
领导范儿应助没天赋采纳,获得10
7秒前
7秒前
午见千山应助科研通管家采纳,获得10
8秒前
黎li发布了新的文献求助10
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
8秒前
背后雨柏完成签到 ,获得积分10
8秒前
云中应助左丘以云采纳,获得20
9秒前
fangfang发布了新的文献求助10
9秒前
9秒前
rui完成签到 ,获得积分10
10秒前
笑点低的发箍完成签到 ,获得积分10
10秒前
研路漫漫给研路漫漫的求助进行了留言
11秒前
博慧发布了新的文献求助10
12秒前
hzz完成签到,获得积分10
12秒前
文献求助完成签到,获得积分10
12秒前
luo完成签到,获得积分10
12秒前
RUI完成签到,获得积分10
12秒前
aron完成签到,获得积分10
12秒前
酷酷李可爱婕完成签到 ,获得积分10
13秒前
加油完成签到,获得积分10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009325
求助须知:如何正确求助?哪些是违规求助? 3549162
关于积分的说明 11301105
捐赠科研通 3283572
什么是DOI,文献DOI怎么找? 1810370
邀请新用户注册赠送积分活动 886205
科研通“疑难数据库(出版商)”最低求助积分说明 811301