Privacy-preserving blockchain-based federated learning for brain tumor segmentation

计算机科学 遮罩(插图) 数据共享 块链 人工智能 异步通信 信息隐私 医疗保健 分割 质量(理念) 机器学习 计算机安全 计算机网络 医学 艺术 哲学 替代医学 认识论 病理 经济 视觉艺术 经济增长
作者
Rajesh Kumar,Cobbinah M. Bernard,Aman Ullah,Riaz Ullah Khan,Jay Kumar,Delanyo Kwame Bensah Kulevome,Yunbo Rao,Shaoning Zeng
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:177: 108646-108646 被引量:6
标识
DOI:10.1016/j.compbiomed.2024.108646
摘要

Improved data sharing between healthcare providers can lead to a higher probability of accurate diagnosis, more effective treatments, and enhanced capabilities of healthcare organizations. One critical area of focus is brain tumor segmentation, a complex task due to the heterogeneous appearance, irregular shape, and variable location of tumors. Accurate segmentation is essential for proper diagnosis and effective treatment planning, yet current techniques often fall short due to these complexities. However, the sensitive nature of health data often prohibits its sharing. Moreover, the healthcare industry faces significant issues, including preserving the privacy of the model and instilling trust in the model. This paper proposes a framework to address these privacy and trust issues by introducing a mechanism for training the global model using federated learning and sharing the encrypted learned parameters via a permissioned blockchain. The blockchain-federated learning algorithm we designed aggregates gradients in the permissioned blockchain to decentralize the global model, while the introduced masking approach retains the privacy of the model parameters. Unlike traditional raw data sharing, this approach enables hospitals or medical research centers to contribute to a globally learned model, thereby enhancing the performance of the central model for all participating medical entities. As a result, the global model can learn about several specific diseases and benefit each contributor with new disease diagnosis tasks, leading to improved treatment options. The proposed algorithm ensures the quality of model data when aggregating the local model, using an asynchronous federated learning procedure to evaluate the shared model's quality. The experimental results demonstrate the efficacy of the proposed scheme for the critical and challenging task of brain tumor segmentation. Specifically, our method achieved a 1.99% improvement in Dice similarity coefficient for enhancing tumors and a 19.08% reduction in Hausdorff distance for whole tumors compared to the baseline methods, highlighting the significant advancement in segmentation performance and reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
威猛先生完成签到,获得积分10
1秒前
1秒前
桐桐应助田园采纳,获得10
1秒前
青花发布了新的文献求助30
2秒前
zxc发布了新的文献求助10
2秒前
亢kxh完成签到,获得积分10
2秒前
2秒前
Mansis发布了新的文献求助10
3秒前
小Q啊啾完成签到,获得积分10
3秒前
落安白完成签到,获得积分10
3秒前
Otorhino完成签到 ,获得积分10
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
zz发布了新的文献求助10
4秒前
整点烧烤发布了新的文献求助10
4秒前
阿木木完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
yyy发布了新的文献求助30
5秒前
珂颜堂AI发布了新的文献求助50
5秒前
5秒前
Yang完成签到,获得积分10
6秒前
小泥发布了新的文献求助10
6秒前
111完成签到 ,获得积分10
6秒前
yu发布了新的文献求助10
6秒前
老芋头完成签到,获得积分10
7秒前
7秒前
ASen完成签到,获得积分10
8秒前
8秒前
8秒前
席涑完成签到,获得积分10
8秒前
还单身的涵梅关注了科研通微信公众号
8秒前
zzf发布了新的文献求助10
8秒前
永远的阿科完成签到,获得积分10
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4599035
求助须知:如何正确求助?哪些是违规求助? 4009790
关于积分的说明 12413421
捐赠科研通 3689444
什么是DOI,文献DOI怎么找? 2033850
邀请新用户注册赠送积分活动 1066993
科研通“疑难数据库(出版商)”最低求助积分说明 952128