亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Privacy-preserving blockchain-based federated learning for brain tumor segmentation

计算机科学 遮罩(插图) 数据共享 块链 人工智能 异步通信 信息隐私 医疗保健 分割 质量(理念) 机器学习 计算机安全 计算机网络 医学 艺术 哲学 替代医学 认识论 病理 经济 视觉艺术 经济增长
作者
Rajesh Kumar,Cobbinah M. Bernard,Aman Ullah,Riaz Ullah Khan,Jay Kumar,Delanyo Kwame Bensah Kulevome,Yunbo Rao,Shaoning Zeng
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:177: 108646-108646
标识
DOI:10.1016/j.compbiomed.2024.108646
摘要

Improved data sharing between healthcare providers can lead to a higher probability of accurate diagnosis, more effective treatments, and enhanced capabilities of healthcare organizations. One critical area of focus is brain tumor segmentation, a complex task due to the heterogeneous appearance, irregular shape, and variable location of tumors. Accurate segmentation is essential for proper diagnosis and effective treatment planning, yet current techniques often fall short due to these complexities. However, the sensitive nature of health data often prohibits its sharing. Moreover, the healthcare industry faces significant issues, including preserving the privacy of the model and instilling trust in the model. This paper proposes a framework to address these privacy and trust issues by introducing a mechanism for training the global model using federated learning and sharing the encrypted learned parameters via a permissioned blockchain. The blockchain-federated learning algorithm we designed aggregates gradients in the permissioned blockchain to decentralize the global model, while the introduced masking approach retains the privacy of the model parameters. Unlike traditional raw data sharing, this approach enables hospitals or medical research centers to contribute to a globally learned model, thereby enhancing the performance of the central model for all participating medical entities. As a result, the global model can learn about several specific diseases and benefit each contributor with new disease diagnosis tasks, leading to improved treatment options. The proposed algorithm ensures the quality of model data when aggregating the local model, using an asynchronous federated learning procedure to evaluate the shared model's quality. The experimental results demonstrate the efficacy of the proposed scheme for the critical and challenging task of brain tumor segmentation. Specifically, our method achieved a 1.99% improvement in Dice similarity coefficient for enhancing tumors and a 19.08% reduction in Hausdorff distance for whole tumors compared to the baseline methods, highlighting the significant advancement in segmentation performance and reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助科研通管家采纳,获得10
7秒前
fantw完成签到,获得积分20
1分钟前
bkagyin应助yff采纳,获得30
1分钟前
1分钟前
yff发布了新的文献求助30
1分钟前
科研通AI2S应助yff采纳,获得10
1分钟前
sofardli发布了新的文献求助10
1分钟前
科研通AI2S应助NCL采纳,获得10
1分钟前
从容芮应助科研通管家采纳,获得60
2分钟前
招水若离完成签到,获得积分10
2分钟前
sofardli完成签到,获得积分10
2分钟前
2分钟前
wtsow完成签到,获得积分0
3分钟前
Shandongdaxiu完成签到 ,获得积分10
3分钟前
依然灬聆听完成签到,获得积分10
4分钟前
杨明明完成签到,获得积分20
4分钟前
小杜发布了新的文献求助10
6分钟前
jason完成签到 ,获得积分10
6分钟前
在水一方应助小杜采纳,获得10
7分钟前
7分钟前
爱静静举报小趴蔡求助涉嫌违规
8分钟前
李剑鸿发布了新的文献求助30
8分钟前
李剑鸿发布了新的文献求助30
9分钟前
Hello应助Grayball采纳,获得30
9分钟前
9分钟前
9分钟前
Grayball发布了新的文献求助30
9分钟前
10分钟前
Fox完成签到 ,获得积分10
11分钟前
Magali发布了新的文献求助10
11分钟前
Legoxpy完成签到,获得积分20
11分钟前
鬼见愁应助科研通管家采纳,获得20
12分钟前
13分钟前
爱静静完成签到,获得积分0
14分钟前
年鱼精完成签到 ,获得积分10
15分钟前
远方关注了科研通微信公众号
15分钟前
15分钟前
Magali发布了新的文献求助30
15分钟前
15分钟前
17分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146739
求助须知:如何正确求助?哪些是违规求助? 2798045
关于积分的说明 7826565
捐赠科研通 2454548
什么是DOI,文献DOI怎么找? 1306376
科研通“疑难数据库(出版商)”最低求助积分说明 627708
版权声明 601527