Identification of bridge influence line and multiple-vehicle loads based on physics-informed neural networks

桥(图论) 鉴定(生物学) 直线(几何图形) 人工神经网络 工程类 计算机科学 人工智能 生物 数学 生态学 几何学 解剖
作者
Xingtian Li,Jinsong Zhu
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
被引量:3
标识
DOI:10.1177/14759217241248570
摘要

Influence lines (ILs) and vehicle loads identification are critical in the design, health monitoring, and damage detection of bridges. Traditionally, the approach used in most existing literature has been to solve the system of equations directly. However, these approaches require complex calculations such as matrix decomposition and regularization coefficient optimization, making them difficult to implement. In addition, there are difficulties in obtaining accurate axle information and effectively separating the bridge response due to each vehicle. Thus, the improvement of identification algorithms for ILs and multi-vehicle loads remains of significant importance. To address these issues, this paper presents a novel approach that integrates prior physical equations and neural networks. This is achieved by integrating the equation that reflects the relationship between axle loads and bridge response into the neural network, utilizing existing methods for acquiring axle information of vehicles. To validate the effectiveness of the proposed method, it was first applied to theoretical and simulation data. The study then investigated the impact of noise and dynamic effects on the accuracy of the results, as well as the range of the neural network layers and sampling intervals. Finally, the method was implemented for identifying multiple-vehicle loads. The findings of the study confirm the feasibility and numerical stability of the proposed approach. The proposed method eliminates the need for complex computational processes, including matrix decomposition, diagonalization, regularization coefficient optimization, and solution vector smoothing fitting. As a result, the implementation of the algorithm is significantly less challenging, and identification accuracy is improved. It is important to note, however, that the proposed method is relatively more time-consuming due to the iterative learning and training required by the neural network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小马甲应助下雨的颜色采纳,获得10
刚刚
1秒前
1秒前
深情安青应助renxiaoting采纳,获得10
1秒前
2秒前
2秒前
震动的又槐完成签到,获得积分10
3秒前
星宿陨发布了新的文献求助10
3秒前
4秒前
Akim应助cc采纳,获得10
5秒前
5秒前
是木易呀完成签到,获得积分10
5秒前
星辰大海应助SMPs采纳,获得10
5秒前
小木同学发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
852应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
呆呆de炸蛋完成签到,获得积分20
7秒前
科研通AI5应助科研通管家采纳,获得20
7秒前
Owen应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
8秒前
科研通AI5应助科研通管家采纳,获得30
8秒前
科研通AI5应助科研通管家采纳,获得30
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
8秒前
Hello应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得30
8秒前
8秒前
乐乐应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
9秒前
Brook1985完成签到,获得积分10
9秒前
小明同学发布了新的文献求助10
9秒前
高分求助中
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Where and how to use plate heat exchangers 350
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3704381
求助须知:如何正确求助?哪些是违规求助? 3253927
关于积分的说明 9886503
捐赠科研通 2965712
什么是DOI,文献DOI怎么找? 1626530
邀请新用户注册赠送积分活动 770853
科研通“疑难数据库(出版商)”最低求助积分说明 743062