Machine learning prediction for lung dose in locally advanced esophageal cancer using volumetric modulated arc therapy

核医学 肺癌 线性回归 医学 肺容积 放射治疗 数学 放射治疗计划 标准差 剂量体积直方图 统计 放射科 病理 内科学
作者
Shogo Kurokawa,Hiroyuki Okamoto,Tetsu Nakaichi,Shohei Mikasa,Satoshi Nakamura,Kotaro Iijima,Takahito Chiba,Hiroki Nakayama,Tairo Kashihara,Koji Inaba,Hiroshi Igaki
出处
期刊:Medical Dosimetry [Elsevier]
标识
DOI:10.1016/j.meddos.2025.02.001
摘要

We developed machine learning (ML) models for predicting lung dose-volume histogram (DVH) metrics [V5 Gy, V20 Gy, and mean lung dose (MLD)] in locally advanced esophageal cancer volumetric modulated arc therapy and assessed the prediction accuracy of the models. Four ML models (linear regression, support vector machine, decision tree, and ensemble) were built with fivefold cross-validation of the predicted lung DVH metrics using a developed program by MATLAB R2022a. Eight explanatory variables were employed: gender, with/without simultaneous integrated boost and jaw tracking, age, height, weight, the ratio of the total irradiation angle to the total rotation angle of the gantry, and the ratio of the longitudinal length of the planning target volume overlapped with the whole lung to the length of the whole lung. To evaluate the prediction accuracy of the ML models, the differences and the Pearson correlation coefficients (r) between the predicted and planned doses were calculated. The mean ± standard deviation values of the planned lung doses of V5 Gy, V20 Gy, and MLD were 34.9 ± 15.2%, 11.9 ± 6.7%, and 7.2 ± 3.3 Gy, respectively. The differences for all models were -0.1 ± 8.0% (V5 Gy,), 0.1 ± 4.2% (V20 Gy), and -0.2 ± 1.7 Gy (MLD). The predicted lung doses were consistent with the clinically planned doses (V5 Gy [r = 0.7-0.8], V20 Gy [r = 0.6-0.8], and MLD [r = 0.7-0.9]), and there was no significant difference in the prediction accuracy among the ML models. These models can promptly evaluate and improve the quality of treatment plans by aiding patient-specific decision-making regarding lung-dose reduction before treatment planning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xw发布了新的文献求助10
1秒前
大个应助快乐小狗采纳,获得10
1秒前
1秒前
2秒前
呀小贝壳完成签到 ,获得积分20
2秒前
猪猪hero应助曾无忧采纳,获得10
2秒前
小番茄发布了新的文献求助10
5秒前
123456发布了新的文献求助10
5秒前
5秒前
6秒前
文武完成签到 ,获得积分10
6秒前
8秒前
无花果应助Smoiy采纳,获得200
8秒前
微醺的Phd完成签到,获得积分10
8秒前
科研通AI2S应助虚拟的羽毛采纳,获得10
8秒前
星辰大海应助柚皘采纳,获得10
9秒前
悲凉的大船完成签到,获得积分10
9秒前
顾翩翩完成签到,获得积分10
10秒前
10秒前
sbrcpyf发布了新的文献求助10
10秒前
nenoaowu发布了新的文献求助10
12秒前
13秒前
快乐小狗发布了新的文献求助10
14秒前
科研通AI2S应助Linanana采纳,获得10
14秒前
李思超完成签到,获得积分10
14秒前
lk完成签到 ,获得积分10
14秒前
稳wen发布了新的文献求助10
15秒前
麦豆腐德应助七七采纳,获得10
15秒前
VDC应助L_采纳,获得20
15秒前
藏马完成签到,获得积分10
16秒前
科研民工_郭完成签到,获得积分10
16秒前
17秒前
田様应助早爹采纳,获得10
18秒前
18秒前
突突完成签到,获得积分10
18秒前
18秒前
momo发布了新的文献求助10
18秒前
20秒前
柚皘发布了新的文献求助10
22秒前
彭于彦祖应助Alex采纳,获得30
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3551983
求助须知:如何正确求助?哪些是违规求助? 3128409
关于积分的说明 9377696
捐赠科研通 2827437
什么是DOI,文献DOI怎么找? 1554378
邀请新用户注册赠送积分活动 725463
科研通“疑难数据库(出版商)”最低求助积分说明 714884