On variance estimation of target population created by inverse probability weighting

统计 估计员 加权 自举(财务) 逆概率加权 非参数统计 人口 反概率 数学 差异(会计) 参数统计 计量经济学 计算机科学 贝叶斯概率 后验概率 医学 人口学 会计 社会学 业务 放射科
作者
Jin‐Mei Chen,Rui Chen,Yuhao Feng,Ming Tan,Pingyan Chen,Ying Wu
出处
期刊:Journal of Biopharmaceutical Statistics [Informa]
卷期号:34 (5): 661-679
标识
DOI:10.1080/10543406.2023.2244593
摘要

ABSTRACTInverse probability weighting (IPW) is frequently used to reduce or minimize the observed confounding in observational studies. IPW creates a pseudo-sample by weighting each individual by the inverse of the conditional probability of receiving the treatment level that he/she has actually received. In the pseudo-sample there is no variation among the multiple individuals generated by weighting the same individual in the original sample. This would reduce the variability of the data and therefore bias the variance estimate in the target population. Conventional variance estimation methods for IPW estimators generally ignore this underestimation and tend to produce biased estimates of variance. We here propose a more reasonable method that incorporates this source of variability by using parametric bootstrapping based on intra-stratum variability estimates. This approach firstly uses propensity score stratification and intra-stratum standard deviation to approximate the variability among multiple individuals generated based on a single individual whose propensity score falls within the corresponding stratum. The parametric bootstrapping is then used to incorporate the target variability by re-generating outcomes after adding a random error term to the original data. The performance of the proposed method is compared with three existing methods including the naïve model-based variance estimator, the nonparametric bootstrap variance estimator, and the robust variance estimator in the simulation section. An example of patients with sarcopenia is used to illustrate the implementation of the proposed approach. According to the results, the proposed approach has desirable statistical properties and can be easily implemented using the provided R code.KEYWORDS: Inverse probability weightingvariance estimationstratificationparametric bootstraptarget populationView correction statement:CORRECTION Disclosure statementNo potential conflict of interest was reported by the author(s).Supplemental dataSupplemental data for this article can be accessed online at https://doi.org/10.1080/10543406.2023.2244593Additional informationFundingThis work was supported by the National Natural Science Foundation of China [Grant number 82273732], the Real World Research Project Grant Fund from the Hainan Institute of Real World data (HNLC2022RWS018), and the 2023 Guangzhou Basic and Applied Basic Research Scheme [Grant number 2023A04J1106].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘腾发布了新的文献求助10
1秒前
Judy发布了新的文献求助10
1秒前
酷波er应助舒心的蜜蜂采纳,获得30
1秒前
binol完成签到,获得积分10
1秒前
2秒前
刘l完成签到,获得积分10
2秒前
2秒前
xiaoshuai发布了新的文献求助10
2秒前
梓mua发布了新的文献求助10
3秒前
boluo发布了新的文献求助10
3秒前
打工dog发布了新的文献求助10
4秒前
科研小白菜完成签到,获得积分10
4秒前
4秒前
6秒前
Lucas应助Judy采纳,获得10
6秒前
6秒前
Abyxwz完成签到,获得积分10
6秒前
7秒前
聪慧的怀绿完成签到,获得积分10
8秒前
8秒前
lee完成签到 ,获得积分10
9秒前
10秒前
kiminonawa应助甜甜谷波采纳,获得10
10秒前
Abyxwz发布了新的文献求助10
10秒前
10秒前
11秒前
wly发布了新的文献求助10
11秒前
11秒前
12秒前
Una完成签到,获得积分10
12秒前
小野发布了新的文献求助10
12秒前
852应助艾可白采纳,获得10
13秒前
李爱国应助ST采纳,获得10
13秒前
酷波er应助哒哒哒采纳,获得10
14秒前
14秒前
GXWFDC完成签到 ,获得积分10
14秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694141
求助须知:如何正确求助?哪些是违规求助? 5095906
关于积分的说明 15212994
捐赠科研通 4850815
什么是DOI,文献DOI怎么找? 2602009
邀请新用户注册赠送积分活动 1553827
关于科研通互助平台的介绍 1511800