On variance estimation of target population created by inverse probability weighting

统计 估计员 加权 自举(财务) 逆概率加权 非参数统计 人口 反概率 数学 差异(会计) 参数统计 计量经济学 计算机科学 贝叶斯概率 后验概率 医学 人口学 会计 社会学 业务 放射科
作者
Qi Cheng,Rui Chen,Yuhao Feng,Ming Tan,Pingyan Chen,Ying Wu
出处
期刊:Journal of Biopharmaceutical Statistics [Informa]
卷期号:: 1-19
标识
DOI:10.1080/10543406.2023.2244593
摘要

ABSTRACTInverse probability weighting (IPW) is frequently used to reduce or minimize the observed confounding in observational studies. IPW creates a pseudo-sample by weighting each individual by the inverse of the conditional probability of receiving the treatment level that he/she has actually received. In the pseudo-sample there is no variation among the multiple individuals generated by weighting the same individual in the original sample. This would reduce the variability of the data and therefore bias the variance estimate in the target population. Conventional variance estimation methods for IPW estimators generally ignore this underestimation and tend to produce biased estimates of variance. We here propose a more reasonable method that incorporates this source of variability by using parametric bootstrapping based on intra-stratum variability estimates. This approach firstly uses propensity score stratification and intra-stratum standard deviation to approximate the variability among multiple individuals generated based on a single individual whose propensity score falls within the corresponding stratum. The parametric bootstrapping is then used to incorporate the target variability by re-generating outcomes after adding a random error term to the original data. The performance of the proposed method is compared with three existing methods including the naïve model-based variance estimator, the nonparametric bootstrap variance estimator, and the robust variance estimator in the simulation section. An example of patients with sarcopenia is used to illustrate the implementation of the proposed approach. According to the results, the proposed approach has desirable statistical properties and can be easily implemented using the provided R code.KEYWORDS: Inverse probability weightingvariance estimationstratificationparametric bootstraptarget populationView correction statement:CORRECTION Disclosure statementNo potential conflict of interest was reported by the author(s).Supplemental dataSupplemental data for this article can be accessed online at https://doi.org/10.1080/10543406.2023.2244593Additional informationFundingThis work was supported by the National Natural Science Foundation of China [Grant number 82273732], the Real World Research Project Grant Fund from the Hainan Institute of Real World data (HNLC2022RWS018), and the 2023 Guangzhou Basic and Applied Basic Research Scheme [Grant number 2023A04J1106].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助小萌采纳,获得10
1秒前
1秒前
gaoww完成签到,获得积分10
1秒前
2秒前
WZ0904发布了新的文献求助10
2秒前
2秒前
lab完成签到 ,获得积分0
2秒前
小蘑菇应助今今采纳,获得10
3秒前
CodeCraft应助秋之月采纳,获得10
3秒前
I1waml完成签到 ,获得积分10
3秒前
3秒前
guygun完成签到,获得积分10
3秒前
zho发布了新的文献求助10
4秒前
独特亦旋发布了新的文献求助10
4秒前
5秒前
研友_LOqqmZ完成签到,获得积分10
6秒前
6秒前
英俊的铭应助文献查找采纳,获得10
6秒前
solobang发布了新的文献求助10
6秒前
Jasper应助老迟到的书雁采纳,获得10
9秒前
orixero应助小二采纳,获得10
9秒前
10秒前
10秒前
simple完成签到,获得积分10
10秒前
caoyy发布了新的文献求助10
10秒前
赵小可可可可完成签到,获得积分10
12秒前
小萌发布了新的文献求助10
13秒前
weiv发布了新的文献求助10
13秒前
海科科发布了新的文献求助10
14秒前
陌上花完成签到,获得积分10
14秒前
我是站长才怪应助微笑襄采纳,获得10
15秒前
caoyy完成签到,获得积分10
16秒前
JamesPei应助独特亦旋采纳,获得10
17秒前
18秒前
18秒前
科目三应助Jenny采纳,获得50
20秒前
gry发布了新的文献求助10
21秒前
Hh发布了新的文献求助10
23秒前
Jzhang应助daniel采纳,获得10
23秒前
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824