已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

On variance estimation of target population created by inverse probability weighting

统计 估计员 加权 自举(财务) 逆概率加权 非参数统计 人口 反概率 数学 差异(会计) 参数统计 计量经济学 计算机科学 贝叶斯概率 后验概率 医学 人口学 会计 社会学 业务 放射科
作者
Jin‐Mei Chen,Rui Chen,Yuhao Feng,Ming Tan,Pingyan Chen,Ying Wu
出处
期刊:Journal of Biopharmaceutical Statistics [Informa]
卷期号:34 (5): 661-679
标识
DOI:10.1080/10543406.2023.2244593
摘要

ABSTRACTInverse probability weighting (IPW) is frequently used to reduce or minimize the observed confounding in observational studies. IPW creates a pseudo-sample by weighting each individual by the inverse of the conditional probability of receiving the treatment level that he/she has actually received. In the pseudo-sample there is no variation among the multiple individuals generated by weighting the same individual in the original sample. This would reduce the variability of the data and therefore bias the variance estimate in the target population. Conventional variance estimation methods for IPW estimators generally ignore this underestimation and tend to produce biased estimates of variance. We here propose a more reasonable method that incorporates this source of variability by using parametric bootstrapping based on intra-stratum variability estimates. This approach firstly uses propensity score stratification and intra-stratum standard deviation to approximate the variability among multiple individuals generated based on a single individual whose propensity score falls within the corresponding stratum. The parametric bootstrapping is then used to incorporate the target variability by re-generating outcomes after adding a random error term to the original data. The performance of the proposed method is compared with three existing methods including the naïve model-based variance estimator, the nonparametric bootstrap variance estimator, and the robust variance estimator in the simulation section. An example of patients with sarcopenia is used to illustrate the implementation of the proposed approach. According to the results, the proposed approach has desirable statistical properties and can be easily implemented using the provided R code.KEYWORDS: Inverse probability weightingvariance estimationstratificationparametric bootstraptarget populationView correction statement:CORRECTION Disclosure statementNo potential conflict of interest was reported by the author(s).Supplemental dataSupplemental data for this article can be accessed online at https://doi.org/10.1080/10543406.2023.2244593Additional informationFundingThis work was supported by the National Natural Science Foundation of China [Grant number 82273732], the Real World Research Project Grant Fund from the Hainan Institute of Real World data (HNLC2022RWS018), and the 2023 Guangzhou Basic and Applied Basic Research Scheme [Grant number 2023A04J1106].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张元东完成签到 ,获得积分10
刚刚
2秒前
浮游应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
3秒前
浮游应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
3秒前
封从霜发布了新的文献求助10
3秒前
Ali完成签到,获得积分10
4秒前
mwm完成签到 ,获得积分10
6秒前
7秒前
慕玖淇完成签到 ,获得积分10
11秒前
小张完成签到 ,获得积分10
12秒前
TIDUS完成签到,获得积分10
13秒前
头上有犄角bb完成签到 ,获得积分10
15秒前
15秒前
莫寻双完成签到,获得积分10
17秒前
17秒前
元儿圆发布了新的文献求助10
19秒前
科研通AI6应助Nikki采纳,获得10
20秒前
大学生完成签到 ,获得积分10
21秒前
a36380382完成签到,获得积分10
22秒前
22秒前
23秒前
23秒前
肉肉完成签到 ,获得积分10
24秒前
随机科研完成签到,获得积分10
25秒前
TiAmo完成签到 ,获得积分10
25秒前
26秒前
大方芷文发布了新的文献求助20
27秒前
Dear77完成签到,获得积分10
28秒前
28秒前
清爽乐菱发布了新的文献求助30
28秒前
TIDUS完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458721
求助须知:如何正确求助?哪些是违规求助? 4564728
关于积分的说明 14296793
捐赠科研通 4489783
什么是DOI,文献DOI怎么找? 2459293
邀请新用户注册赠送积分活动 1449020
关于科研通互助平台的介绍 1424511