On variance estimation of target population created by inverse probability weighting

统计 估计员 加权 自举(财务) 逆概率加权 非参数统计 人口 反概率 数学 差异(会计) 参数统计 计量经济学 计算机科学 贝叶斯概率 后验概率 医学 人口学 会计 社会学 业务 放射科
作者
Qi Cheng,Rui Chen,Yuhao Feng,Ming Tan,Pingyan Chen,Ying Wu
出处
期刊:Journal of Biopharmaceutical Statistics [Taylor & Francis]
卷期号:: 1-19
标识
DOI:10.1080/10543406.2023.2244593
摘要

ABSTRACTInverse probability weighting (IPW) is frequently used to reduce or minimize the observed confounding in observational studies. IPW creates a pseudo-sample by weighting each individual by the inverse of the conditional probability of receiving the treatment level that he/she has actually received. In the pseudo-sample there is no variation among the multiple individuals generated by weighting the same individual in the original sample. This would reduce the variability of the data and therefore bias the variance estimate in the target population. Conventional variance estimation methods for IPW estimators generally ignore this underestimation and tend to produce biased estimates of variance. We here propose a more reasonable method that incorporates this source of variability by using parametric bootstrapping based on intra-stratum variability estimates. This approach firstly uses propensity score stratification and intra-stratum standard deviation to approximate the variability among multiple individuals generated based on a single individual whose propensity score falls within the corresponding stratum. The parametric bootstrapping is then used to incorporate the target variability by re-generating outcomes after adding a random error term to the original data. The performance of the proposed method is compared with three existing methods including the naïve model-based variance estimator, the nonparametric bootstrap variance estimator, and the robust variance estimator in the simulation section. An example of patients with sarcopenia is used to illustrate the implementation of the proposed approach. According to the results, the proposed approach has desirable statistical properties and can be easily implemented using the provided R code.KEYWORDS: Inverse probability weightingvariance estimationstratificationparametric bootstraptarget populationView correction statement:CORRECTION Disclosure statementNo potential conflict of interest was reported by the author(s).Supplemental dataSupplemental data for this article can be accessed online at https://doi.org/10.1080/10543406.2023.2244593Additional informationFundingThis work was supported by the National Natural Science Foundation of China [Grant number 82273732], the Real World Research Project Grant Fund from the Hainan Institute of Real World data (HNLC2022RWS018), and the 2023 Guangzhou Basic and Applied Basic Research Scheme [Grant number 2023A04J1106].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
陈曦发布了新的文献求助10
1秒前
俊逸书琴发布了新的文献求助10
1秒前
2秒前
2秒前
黄文燕关注了科研通微信公众号
2秒前
丘比特应助欣喜靖采纳,获得10
3秒前
猪猪hero发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
坦率晓霜完成签到,获得积分10
4秒前
4秒前
5秒前
111发布了新的文献求助10
7秒前
rayce发布了新的文献求助10
7秒前
奋斗蜗牛发布了新的文献求助10
7秒前
zumrat发布了新的文献求助10
7秒前
8秒前
阿宛发布了新的文献求助10
8秒前
巫寻完成签到,获得积分10
9秒前
我是老大应助L~采纳,获得10
9秒前
拆鱼鱼完成签到,获得积分10
9秒前
MEST发布了新的文献求助10
9秒前
英俊绝义发布了新的文献求助10
9秒前
10秒前
10秒前
大西瓜发布了新的文献求助10
11秒前
11秒前
正直摇伽发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
12秒前
滴滴发布了新的文献求助10
12秒前
zcy发布了新的文献求助10
14秒前
Yue发布了新的文献求助10
14秒前
张泽东发布了新的文献求助10
14秒前
完美世界应助彩色的老五采纳,获得10
15秒前
yinshan完成签到 ,获得积分10
15秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979440
求助须知:如何正确求助?哪些是违规求助? 3523402
关于积分的说明 11217322
捐赠科研通 3260886
什么是DOI,文献DOI怎么找? 1800231
邀请新用户注册赠送积分活动 878983
科研通“疑难数据库(出版商)”最低求助积分说明 807126