亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Data-Free Knowledge Distillation via Generator-Free Data Generation for Non-IID Federated Learning

计算机科学 发电机(电路理论) 利用 蒸馏 数据挖掘 人工智能 机器学习 功率(物理) 化学 物理 计算机安全 有机化学 量子力学
作者
Siran Zhao,Tianchi Liao,Lele Fu,Chuan Chen,Jing Bian,Zibin Zheng
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-3364332/v1
摘要

Abstract Data heterogeneity (Non-IID) on Federated Learning (FL) is currently a widely publicized problem, which leads to local model drift and performance degradation. Because of the advantage of knowledge distillation, it has been explored in some recent work to refine global models. However, these approaches rely on a proxy dataset or a data generator. First, in many FL scenarios, proxy dataset do not necessarily exist on the server. Second, the quality of data generated by the generator is unstable and the generator depends on the computing resources of the server. In this work, we propose a novel data-Free knowledge distillation approach via generator-Free Data Generation for Non-IID FL, dubbed as FedF 2 DG. Specifically, FedF 2 DG requires only local models to generate pseudo datasets for each client, and can generate hard samples by adding an additional regularization term that exploit disagreements between local model and global model. Meanwhile, FedF 2 DG enables flexible utilization of computational resources by generating pseudo dataset locally or on the server. And to address the label distribution shift in Non-IID FL, we propose a Data Generation Principle that can adaptively control the label distribution and number of pseudo dataset based on client current state, and this allows for the extraction of more client knowledge. Then knowledge distillation is performed to transfer the knowledge in local models to the global model. Extensive experiments demonstrate that our proposed method significantly outperforms the state-of-the-art FL methods and can serve as plugin for existing Federated Learning methds such as FedAvg, FedProx, etc, and improve their performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
16秒前
田様应助义气雁采纳,获得10
24秒前
49秒前
mashibeo完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
rrrrrrry发布了新的文献求助10
1分钟前
Sylvia_J完成签到 ,获得积分10
1分钟前
平淡道天完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
CodeCraft应助科研通管家采纳,获得10
2分钟前
3分钟前
3分钟前
研友_LBRPOL发布了新的文献求助10
3分钟前
研友_LBRPOL完成签到,获得积分10
3分钟前
万能图书馆应助张宇枭采纳,获得10
3分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
4分钟前
张宇枭发布了新的文献求助10
4分钟前
CodeCraft应助科研通管家采纳,获得10
5分钟前
5分钟前
NexusExplorer应助科研通管家采纳,获得10
5分钟前
孤独的大灰狼完成签到 ,获得积分10
5分钟前
5分钟前
瘦瘦乌龟完成签到 ,获得积分10
5分钟前
swayqur应助典雅幻然采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
6分钟前
lsl发布了新的文献求助10
6分钟前
6分钟前
6分钟前
6分钟前
所所应助科研通管家采纳,获得10
7分钟前
joanna完成签到,获得积分10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
7分钟前
7分钟前
7分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015149
求助须知:如何正确求助?哪些是违规求助? 3555115
关于积分的说明 11317881
捐赠科研通 3288577
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887869
科研通“疑难数据库(出版商)”最低求助积分说明 811983