Data-Free Knowledge Distillation via Generator-Free Data Generation for Non-IID Federated Learning

计算机科学 发电机(电路理论) 利用 蒸馏 数据挖掘 人工智能 机器学习 计算机安全 量子力学 物理 功率(物理) 有机化学 化学
作者
Siran Zhao,Tianchi Liao,Lele Fu,Chuan Chen,Jing Bian,Zibin Zheng
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-3364332/v1
摘要

Abstract Data heterogeneity (Non-IID) on Federated Learning (FL) is currently a widely publicized problem, which leads to local model drift and performance degradation. Because of the advantage of knowledge distillation, it has been explored in some recent work to refine global models. However, these approaches rely on a proxy dataset or a data generator. First, in many FL scenarios, proxy dataset do not necessarily exist on the server. Second, the quality of data generated by the generator is unstable and the generator depends on the computing resources of the server. In this work, we propose a novel data-Free knowledge distillation approach via generator-Free Data Generation for Non-IID FL, dubbed as FedF 2 DG. Specifically, FedF 2 DG requires only local models to generate pseudo datasets for each client, and can generate hard samples by adding an additional regularization term that exploit disagreements between local model and global model. Meanwhile, FedF 2 DG enables flexible utilization of computational resources by generating pseudo dataset locally or on the server. And to address the label distribution shift in Non-IID FL, we propose a Data Generation Principle that can adaptively control the label distribution and number of pseudo dataset based on client current state, and this allows for the extraction of more client knowledge. Then knowledge distillation is performed to transfer the knowledge in local models to the global model. Extensive experiments demonstrate that our proposed method significantly outperforms the state-of-the-art FL methods and can serve as plugin for existing Federated Learning methds such as FedAvg, FedProx, etc, and improve their performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
搜集达人应助啦啦啦采纳,获得10
2秒前
2秒前
Sove发布了新的文献求助10
2秒前
4秒前
5秒前
Gino完成签到,获得积分0
5秒前
企鹅爱煲汤完成签到,获得积分10
6秒前
斯文败类应助阿烨采纳,获得10
7秒前
科研那些年完成签到,获得积分10
8秒前
金顺完成签到,获得积分10
8秒前
jiemy发布了新的文献求助10
8秒前
风中梦蕊完成签到 ,获得积分10
9秒前
绿泡泡发布了新的文献求助10
10秒前
10秒前
13秒前
怡然远望完成签到 ,获得积分10
18秒前
欣慰秋蝶完成签到,获得积分10
18秒前
18秒前
19秒前
linguobin完成签到,获得积分20
20秒前
xinyuli完成签到,获得积分10
21秒前
22秒前
大尧子完成签到 ,获得积分10
22秒前
zhangscience发布了新的文献求助10
24秒前
delect完成签到,获得积分10
25秒前
阿烨发布了新的文献求助10
25秒前
surfing发布了新的文献求助30
26秒前
Fa完成签到,获得积分10
28秒前
28秒前
王兴雨完成签到,获得积分10
28秒前
无名老大应助上级医师采纳,获得30
29秒前
30秒前
李爱国应助研友_nV2ROn采纳,获得10
30秒前
CodeCraft应助星期一采纳,获得10
31秒前
烟花应助zhangscience采纳,获得10
31秒前
31秒前
33秒前
34秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3441528
求助须知:如何正确求助?哪些是违规求助? 3038152
关于积分的说明 8970749
捐赠科研通 2726439
什么是DOI,文献DOI怎么找? 1495472
科研通“疑难数据库(出版商)”最低求助积分说明 691208
邀请新用户注册赠送积分活动 688232