重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Arbitrary-scale Super-resolution via Deep Learning: A Comprehensive Survey

计算机科学 增采样 比例(比率) 人工智能 深度学习 分辨率(逻辑) 计算机视觉 机器学习 班级(哲学) 图像(数学) 量子力学 物理
作者
Hongying Liu,Zekun Li,Fanhua Shang,Yuanyuan Liu,Liang Wan,Wei Feng,Radu Timofte
出处
期刊:Information Fusion [Elsevier]
卷期号:102: 102015-102015 被引量:15
标识
DOI:10.1016/j.inffus.2023.102015
摘要

Super-resolution (SR) is an essential class of low-level vision tasks, which aims to improve the resolution of images or videos in computer vision. In recent years, significant progress has been made in image and video super-resolution techniques based on deep learning. Nevertheless, most of the methods only consider SR with a few integer scale factors, which limits the application of the SR techniques to real-world problems. Recently, the methods to achieve arbitrary-scale super-resolution via a single model have attracted much attention. However, there is no work to thoroughly analyze the arbitrary-scale methods based on deep learning. In this work, we present a comprehensive and systematic review of 45 existing deep learning-based methods for arbitrary-scale image and video SR. We first classify the existing SR methods according to the resolved scales. Furthermore, we propose an in-depth taxonomy for state-of-the-art methods based on the core problem of how to achieve arbitrary-scale super-resolution, i.e., how to perform arbitrary-scale upsampling. Based on our taxonomy, the performance of existing arbitrary-scale SR methods is compared, and their advantages and limitations are analyzed. We also provide some guidance for the selection of these methods in different real-world applications. Finally, we briefly discuss the future directions of arbitrary-scale super-resolution, which shows some inspirations for the progress of subsequent works on arbitrary-scale image and video super-resolution tasks. The paper repository of this work will be available at https://github.com/Weepingchestnut/Arbitrary-Scale-SR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助lingling采纳,获得10
刚刚
qqzhang完成签到,获得积分10
刚刚
AXX041795发布了新的文献求助10
1秒前
1秒前
2秒前
3秒前
rh发布了新的文献求助10
3秒前
纪汶欣发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
5秒前
哈哈王子发布了新的文献求助10
5秒前
6秒前
O0O完成签到,获得积分20
6秒前
6秒前
FashionBoy应助虚心的大树采纳,获得10
6秒前
7秒前
7秒前
认真搞科研啦完成签到,获得积分10
7秒前
要减肥高山完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
11秒前
11秒前
12秒前
烟花应助sleey6采纳,获得10
12秒前
泛溪发布了新的文献求助10
13秒前
13秒前
今日发布了新的文献求助10
13秒前
14秒前
Rica325发布了新的文献求助10
14秒前
无限丹蝶完成签到,获得积分10
15秒前
16秒前
小二郎应助Xuxiaojun采纳,获得30
17秒前
lingling发布了新的文献求助10
18秒前
筱筱发布了新的文献求助10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468193
求助须知:如何正确求助?哪些是违规求助? 4571644
关于积分的说明 14330855
捐赠科研通 4498131
什么是DOI,文献DOI怎么找? 2464353
邀请新用户注册赠送积分活动 1453088
关于科研通互助平台的介绍 1427739