Arbitrary-scale Super-resolution via Deep Learning: A Comprehensive Survey

计算机科学 增采样 比例(比率) 人工智能 深度学习 分辨率(逻辑) 计算机视觉 机器学习 班级(哲学) 图像(数学) 量子力学 物理
作者
Hongying Liu,Zekun Li,Fanhua Shang,Yuanyuan Liu,Liang Wan,Wei Feng,Radu Timofte
出处
期刊:Information Fusion [Elsevier BV]
卷期号:102: 102015-102015 被引量:9
标识
DOI:10.1016/j.inffus.2023.102015
摘要

Super-resolution (SR) is an essential class of low-level vision tasks, which aims to improve the resolution of images or videos in computer vision. In recent years, significant progress has been made in image and video super-resolution techniques based on deep learning. Nevertheless, most of the methods only consider SR with a few integer scale factors, which limits the application of the SR techniques to real-world problems. Recently, the methods to achieve arbitrary-scale super-resolution via a single model have attracted much attention. However, there is no work to thoroughly analyze the arbitrary-scale methods based on deep learning. In this work, we present a comprehensive and systematic review of 45 existing deep learning-based methods for arbitrary-scale image and video SR. We first classify the existing SR methods according to the resolved scales. Furthermore, we propose an in-depth taxonomy for state-of-the-art methods based on the core problem of how to achieve arbitrary-scale super-resolution, i.e., how to perform arbitrary-scale upsampling. Based on our taxonomy, the performance of existing arbitrary-scale SR methods is compared, and their advantages and limitations are analyzed. We also provide some guidance for the selection of these methods in different real-world applications. Finally, we briefly discuss the future directions of arbitrary-scale super-resolution, which shows some inspirations for the progress of subsequent works on arbitrary-scale image and video super-resolution tasks. The paper repository of this work will be available at https://github.com/Weepingchestnut/Arbitrary-Scale-SR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
利物浦996完成签到,获得积分10
刚刚
2秒前
7秒前
8秒前
畅快海云完成签到 ,获得积分10
11秒前
笨笨芯发布了新的文献求助30
13秒前
Yxy2021发布了新的文献求助10
14秒前
wys完成签到,获得积分10
15秒前
CodeCraft应助Ztx采纳,获得10
16秒前
17秒前
shaw完成签到,获得积分10
18秒前
18秒前
Lucas应助jjjdcjcj采纳,获得10
18秒前
领导范儿应助当代鲁迅采纳,获得10
18秒前
20秒前
Wang完成签到,获得积分10
20秒前
孙燕应助H28G采纳,获得10
21秒前
QYPANG发布了新的文献求助10
21秒前
wuy发布了新的文献求助10
24秒前
24秒前
Xin发布了新的文献求助10
25秒前
磊磊完成签到,获得积分10
25秒前
脑洞疼应助風声鶴唳采纳,获得10
27秒前
小布丁完成签到 ,获得积分10
29秒前
重重重飞完成签到 ,获得积分10
30秒前
jjjdcjcj发布了新的文献求助10
30秒前
32秒前
wuy完成签到,获得积分10
33秒前
34秒前
风趣过客发布了新的文献求助10
37秒前
QDU发布了新的文献求助10
37秒前
38秒前
5321发布了新的文献求助10
43秒前
彭于晏应助Xin采纳,获得10
43秒前
46秒前
打打应助相信柯学采纳,获得10
47秒前
阳光的紊完成签到,获得积分10
48秒前
顾矜应助乐观沛白采纳,获得10
51秒前
51秒前
太阳花发布了新的文献求助10
52秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993097
求助须知:如何正确求助?哪些是违规求助? 3534001
关于积分的说明 11264347
捐赠科研通 3273705
什么是DOI,文献DOI怎么找? 1806142
邀请新用户注册赠送积分活动 883003
科研通“疑难数据库(出版商)”最低求助积分说明 809652