MFD-Net: Modality Fusion Diffractive Network for Segmentation of Multimodal Brain Tumor Image

计算机科学 模态(人机交互) 特征(语言学) 人工智能 分割 模式识别(心理学) 块(置换群论) 图像分割 参数统计 一般化 概化理论 数学 哲学 数学分析 统计 语言学 几何学
作者
Qingfan Hou,Yanjun Peng,Zhuofei Wang,Jiao Wang,Jiang Jian
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (12): 5958-5969 被引量:7
标识
DOI:10.1109/jbhi.2023.3318640
摘要

Automatic brain tumor segmentation using multi-parametric magnetic resonance imaging (mpMRI) holds substantial importance for brain diagnosis, monitoring, and therapeutic strategy planning. Given the constraints inherent to manual segmentation, adopting deep learning networks for accomplishing accurate and automated segmentation emerges as an essential advancement. In this article, we propose a modality fusion diffractive network (MFD-Net) composed of diffractive blocks and modality feature extractors for the automatic and accurate segmentation of brain tumors. The diffractive block, designed based on Fraunhofer's single-slit diffraction principle, emphasizes neighboring high-confidence feature points and suppresses low-quality or isolated feature points, enhancing the interrelation of features. Adopting a global passive reception mode overcomes the issue of fixed receptive fields. Through a self-supervised approach, the modality feature extractor effectively utilizes the inherent generalization information of each modality, enabling the main segmentation branch to focus more on multimodal fusion feature information. We apply the diffractive block on nn-UNet in the MICCAI BraTS 2022 challenge, ranked first in the pediatric population data and third in the BraTS continuous evaluation data, proving the superior generalizability of our network. We also train separately on the BraTS 2018, 2019, and 2021 datasets. Experiments demonstrate that the proposed network outperforms state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
insane完成签到,获得积分10
刚刚
云儿发布了新的文献求助20
刚刚
Jasper应助哲999采纳,获得10
刚刚
wanci应助拟拟采纳,获得10
1秒前
王超超完成签到,获得积分10
1秒前
1秒前
圈圈发布了新的文献求助10
2秒前
狼来了aas完成签到,获得积分10
2秒前
2秒前
大胆的莛发布了新的文献求助10
3秒前
文静的信封完成签到,获得积分10
3秒前
CipherSage应助wu采纳,获得10
3秒前
科目三应助震666采纳,获得30
3秒前
April发布了新的文献求助10
4秒前
加菲丰丰应助猫橘汽水采纳,获得30
4秒前
阳光海云完成签到,获得积分10
4秒前
5秒前
攒一口袋星星完成签到,获得积分10
5秒前
alwry完成签到,获得积分10
5秒前
eyebrow完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
6秒前
小胖鱼完成签到,获得积分20
6秒前
Grayball应助啊这啥啊这是采纳,获得10
7秒前
cf完成签到,获得积分10
7秒前
王一线完成签到,获得积分10
8秒前
8秒前
8秒前
栗子完成签到,获得积分10
8秒前
bkagyin应助格格星采纳,获得10
9秒前
Youdge完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
yyf发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740