DeepCMI: a graph-based model for accurate prediction of circRNA–miRNA interactions with multiple information

小RNA 计算机科学 计算生物学 预测建模 生物 源代码 数据挖掘 机器学习 基因 遗传学 操作系统
作者
Yue-Chao Li,Zhu‐Hong You,Chang-Qing Yu,Lei Wang,Lun Hu,Pengwei Hu,Yan Qiao,Xin-Fei Wang,Yu‐An Huang
出处
期刊:Briefings in Functional Genomics [Oxford University Press]
被引量:10
标识
DOI:10.1093/bfgp/elad030
摘要

Abstract Recently, the role of competing endogenous RNAs in regulating gene expression through the interaction of microRNAs has been closely associated with the expression of circular RNAs (circRNAs) in various biological processes such as reproduction and apoptosis. While the number of confirmed circRNA–miRNA interactions (CMIs) continues to increase, the conventional in vitro approaches for discovery are expensive, labor intensive, and time consuming. Therefore, there is an urgent need for effective prediction of potential CMIs through appropriate data modeling and prediction based on known information. In this study, we proposed a novel model, called DeepCMI, that utilizes multi-source information on circRNA/miRNA to predict potential CMIs. Comprehensive evaluations on the CMI-9905 and CMI-9589 datasets demonstrated that DeepCMI successfully infers potential CMIs. Specifically, DeepCMI achieved AUC values of 90.54% and 94.8% on the CMI-9905 and CMI-9589 datasets, respectively. These results suggest that DeepCMI is an effective model for predicting potential CMIs and has the potential to significantly reduce the need for downstream in vitro studies. To facilitate the use of our trained model and data, we have constructed a computational platform, which is available at http://120.77.11.78/DeepCMI/. The source code and datasets used in this work are available at https://github.com/LiYuechao1998/DeepCMI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柯一一应助huahua采纳,获得10
刚刚
dong应助huahua采纳,获得10
刚刚
Wang发布了新的文献求助10
1秒前
2秒前
赵丽红发布了新的文献求助10
2秒前
晨晨发布了新的文献求助10
3秒前
4秒前
Caer完成签到 ,获得积分0
5秒前
FashionBoy应助丿丶恒采纳,获得10
5秒前
Havoc发布了新的文献求助10
5秒前
7秒前
hanzhang完成签到,获得积分10
8秒前
8秒前
8秒前
Fisheep发布了新的文献求助10
9秒前
包远锋发布了新的文献求助10
9秒前
苍刺完成签到,获得积分10
9秒前
木槿完成签到,获得积分10
10秒前
Hello应助小马哥采纳,获得10
10秒前
11秒前
jnfy完成签到,获得积分10
11秒前
13秒前
whisper发布了新的文献求助10
13秒前
znn完成签到,获得积分10
14秒前
14秒前
上官若男应助JY采纳,获得10
16秒前
liuzengzhang666完成签到,获得积分10
17秒前
FFFFF发布了新的文献求助10
17秒前
小蘑菇应助丿丶恒采纳,获得10
17秒前
Minguk发布了新的文献求助10
18秒前
俏皮火完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助10
19秒前
20秒前
77完成签到,获得积分10
21秒前
21秒前
22秒前
SciGPT应助xiaofanwang采纳,获得10
23秒前
23秒前
内向的老四完成签到,获得积分10
23秒前
简单花花发布了新的文献求助10
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959633
求助须知:如何正确求助?哪些是违规求助? 3505879
关于积分的说明 11126688
捐赠科研通 3237840
什么是DOI,文献DOI怎么找? 1789380
邀请新用户注册赠送积分活动 871691
科研通“疑难数据库(出版商)”最低求助积分说明 802963