作者
Tae Won Kim,Philippe L. Bédard,Patricia LoRusso,Michael S. Gordon,Johanna C. Bendell,Do‐Youn Oh,Myung‐Ju Ahn,Elena Garralda,Sandra P. D’Angelo,Jayesh Desai,F. Stephen Hodi,Zev A. Wainberg,Jean‐Pierre Delord,Phillippe Cassier,Andrés Cervantes,Marta Gil-Martín,Benjamin Wu,Namrata S. Patil,Yanling Jin,Tien Hoang,Diana Mendus,Xiaohui Wen,Raymond D. Meng,Byoung Chul Cho
摘要
Importance Inhibition of the T-cell immunoreceptor with Ig and ITIM domains (TIGIT)/poliovirus receptor pathway may amplify the antitumor immune response of atezolizumab in programmed death ligand 1–selected tumors. Objective To evaluate the safety and antitumor activity of the anti-TIGIT antibody tiragolumab and its combination with atezolizumab in patients with advanced solid tumors. Design, Setting, and Participants The GO30103 open-label, first-in-human phase 1a/1b dose-escalation and dose-expansion nonrandomized controlled trial was conducted at 13 sites in 6 countries (Australia, Canada, France, Korea, Spain, and the US). The start dates were May 23, 2016, for phase 1a and October 11, 2016, for phase 1b. Patients were aged 18 years or older with measurable disease at baseline. The clinical cutoff date was October 1, 2021. Data analysis was performed on January 24, 2022. Interventions Patients received fixed-dose intravenous tiragolumab on day 1 of each 21-day cycle (2 mg escalating to 1200 mg) in phase 1a, plus fixed-dose intravenous atezolizumab (1200 mg every 3 weeks) in phase 1b. Patients were treated until disease progression, loss of clinical benefit, or development of unacceptable toxicity. Main Outcomes and Measures The primary end points included the safety, tolerability, and recommended phase 2 dose (RP2D) of tiragolumab or combination tiragolumab plus atezolizumab. The secondary end point included the investigator-assessed objective response rate (ORR). Counts and percentages are used for categorical variables, and medians and ranges are used for continuous variables. Results Among the phase 1a (n = 24) and 1b (n = 49) dose-escalation cohorts, the median age was 60 (range, 40-77) and 54 (range, 25-81) years, respectively. More than half of patients were women (14 of 24 [58%] and 25 of 49 [51%]), and more than a third (10 [42%] and 18 [37%]) had received 4 or more prior cancer therapies. No dose-limiting toxicities occurred, and the maximum tolerated dose of tiragolumab was not reached (NR). The most frequent treatment-related adverse events (AEs) were fatigue (5 of 24 [21%]) in phase 1a and pruritus (5 of 49 [10%]) in phase 1b; the majority of AEs were grade 1 or 2. Immune-mediated AEs occurred in 4 of 24 (17%) and 29 of 49 (59%) patients during phases 1a and 1b, respectively (primarily grade 1 or 2). The RP2D of tiragolumab was 600 mg intravenously every 3 weeks, which was tested in phase 1b dose expansion. The confirmed ORR was 0% during phase 1a, with evidence of antitumor activity in 6% of patients (n = 3) during phase 1b. The safety profile of combination tiragolumab plus atezolizumab in phase 1b was similar in the dose-escalation and dose-expansion cohorts. The confirmed ORR was 46% (6 of 13) in the non–small cell lung cancer (NSCLC) cohort (median duration of response [DOR], NR) and 28% (5 of 18) in the esophageal cancer (EC) cohort (median DOR, 15.2 [95% CI, 7.0 to NR] months). Conclusions and Relevance In this nonrandomized controlled trial, tiragolumab was well tolerated with or without atezolizumab; no new safety signals were observed. Preliminary antitumor activity was demonstrated for the combination regimen in patients with cancer immunotherapy–naive metastatic NSCLC or EC. Trial Registration ClinicalTrials.gov Identifier: NCT02794571