MS-FTSCNN: An EEG emotion recognition method from the combination of multi-domain features

计算机科学 模式识别(心理学) 人工智能 脑电图 预处理器 频域 保险丝(电气) 特征(语言学) 语音识别 核(代数) 特征提取 计算机视觉 数学 心理学 语言学 哲学 组合数学 精神科 电气工程 工程类
作者
Feifei Li,Kuangrong Hao,Bing Wei,Lingguang Hao,Lihong Ren
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:88: 105690-105690 被引量:8
标识
DOI:10.1016/j.bspc.2023.105690
摘要

Electroencephalography (EEG), as a physiological cue, is more objective and reliable in identifying emotions than non-physiological cues. Previous methods only consider one or two relationships among frequency, time and spatial domain features of EEG signals, and the designed models may still be relatively large in terms of parameters. Meanwhile, the training process of the previous networks is troublesome during algorithm optimization. To address these challenges, we design a simple and efficient feature preprocessing method to obtain a 3D feature structure that contains EEG signal information in the frequency, time and spatial domains simultaneously. Then, we propose a multiscale frequency–time–spatial convolutional model, MS-FTSCNN, which is able to capture frequency, time and spatial features from the input signals and fuse three features more efficiently. Moreover, the multi-scale one-dimensional convolutional kernel in our method can reduce network parameters, providing possibilities for real-time online applications. Finally, the recognition accuracies of arousal and valence of our proposed model are 93.82%, 94.48% on DEAP dataset and 92.64%, 92.15% on MOHNOB-HCI dataset, which is higher than most existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大耳萌图完成签到 ,获得积分10
刚刚
浮游应助S月小小采纳,获得10
2秒前
明亮灭绝发布了新的文献求助10
3秒前
elmacho完成签到 ,获得积分10
5秒前
时深完成签到 ,获得积分10
7秒前
7秒前
科研人完成签到,获得积分10
7秒前
暴躁的惜筠完成签到,获得积分10
7秒前
GGZ完成签到,获得积分10
8秒前
Lucas应助西柚柠檬采纳,获得10
8秒前
念梦完成签到,获得积分10
8秒前
芝意CHEAE完成签到 ,获得积分10
9秒前
10秒前
潇洒的紫易完成签到,获得积分10
11秒前
11秒前
Yuri发布了新的文献求助10
11秒前
大方的契完成签到,获得积分10
12秒前
13秒前
明天见发布了新的文献求助10
14秒前
踏实语海完成签到,获得积分10
14秒前
yan123完成签到,获得积分10
14秒前
shin0324发布了新的文献求助10
15秒前
赘婿应助与一人同游采纳,获得10
15秒前
虚幻诗柳完成签到,获得积分10
18秒前
大方的契发布了新的文献求助10
20秒前
changping应助come采纳,获得100
20秒前
20秒前
luozejun完成签到,获得积分10
22秒前
酷波er应助李陈采纳,获得10
23秒前
Lucas应助宋贺贺采纳,获得10
24秒前
哈哈环完成签到 ,获得积分10
24秒前
24秒前
qnd关注了科研通微信公众号
24秒前
gqq完成签到,获得积分10
25秒前
ZJFL完成签到,获得积分10
26秒前
26秒前
27秒前
唯旧发布了新的文献求助10
27秒前
12345完成签到,获得积分10
27秒前
Yuri完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5305017
求助须知:如何正确求助?哪些是违规求助? 4451211
关于积分的说明 13851392
捐赠科研通 4338545
什么是DOI,文献DOI怎么找? 2381993
邀请新用户注册赠送积分活动 1377139
关于科研通互助平台的介绍 1344501