毒素
蛋白激酶B
PI3K/AKT/mTOR通路
氧化应激
硒
化学
细胞凋亡
分子生物学
生物
生物化学
有机化学
作者
Xinrui Deng,Tingting Yu,Meichen Gao,Jiaqi Wang,Wenying Sun,Shiwen Xu
标识
DOI:10.1016/j.fct.2023.114185
摘要
T-2 toxin, is a monotrichous mycotoxin commonly found in animal feed and agricultural products that can damage tissues and organs through oxidative stress. Selenium is a trace element with favorable antioxidant effects. However, it is unclear whether T-2 toxin-induces ferroptosis in LMH cells and whether Na2SeO3 has a protective role in this process. To investigate the process of hepatic injury by T-2 toxin and its antagonistic effect by Na2SeO3, we used 20 ng/mL T-2 toxin as well as 160 nmol/L Na2SeO3 to treat the LMH cells. The results demonstrated that exposure to the T-2 toxin induced iron death by increasing the quantity of ROS, leading to oxidative damage, decreasing the quantities of SOD, GPx, and T-AOC, and increasing the accumulation of MDA and H2O2, which resulted in the accumulation of Fe2+ and the down-regulation of the manifestation of linked genes and proteins including FTH1, Gpx4, NQO-1, and HO-1. After the addition of Na2SeO3, the PI3K/AKT/Nrf2 pathway is activated by regulating the selenoproteins gene level, and the above abnormal changes are reversed. In summary, Na2SeO3 alleviated T-2 toxin-induced iron death via the PI3K/AKT/Nrf2 pathway. These study not only broaden the cytotoxic knowledge regarding T-2 toxin, but also serve as a foundation for the use of Na2SeO3 in daily life.
科研通智能强力驱动
Strongly Powered by AbleSci AI