Noninvasive Detection of Salt Stress in Cotton Seedlings by Combining Multicolor Fluorescence–Multispectral Reflectance Imaging with EfficientNet-OB2

多光谱图像 苗木 盐(化学) 压力(语言学) 环境科学 主成分分析 反射率 化学 计算机科学 农学 人工智能 生物 光学 物理 语言学 哲学 物理化学
作者
Jiayi Li,Haiyan zeng,Chenxin Huang,Libin Wu,Jie Ma,Beibei Zhou,Dapeng Ye,Haiyong Weng
出处
期刊:Plant phenomics [AAAS00]
卷期号:5 被引量:2
标识
DOI:10.34133/plantphenomics.0125
摘要

Salt stress is considered one of the primary threats to cotton production. Although cotton is found to have reasonable salt tolerance, it is sensitive to salt stress during the seedling stage. This research aimed to propose an effective method for rapidly detecting salt stress of cotton seedlings using multicolor fluorescence-multispectral reflectance imaging coupled with deep learning. A prototyping platform that can obtain multicolor fluorescence and multispectral reflectance images synchronously was developed to get different characteristics of each cotton seedling. The experiments revealed that salt stress harmed cotton seedlings with an increase in malondialdehyde and a decrease in chlorophyll content, superoxide dismutase, and catalase after 17 days of salt stress. The Relief algorithm and principal component analysis were introduced to reduce data dimension with the first 9 principal component images (PC1 to PC9) accounting for 95.2% of the original variations. An optimized EfficientNet-B2 (EfficientNet-OB2), purposely used for a fixed resource budget, was established to detect salt stress by optimizing a proportional number of convolution kernels assigned to the first convolution according to the corresponding contributions of PC1 to PC9 images. EfficientNet-OB2 achieved an accuracy of 84.80%, 91.18%, and 95.10% for 5, 10, and 17 days of salt stress, respectively, which outperformed EfficientNet-B2 and EfficientNet-OB4 with higher training speed and fewer parameters. The results demonstrate the potential of combining multicolor fluorescence-multispectral reflectance imaging with the deep learning model EfficientNet-OB2 for salt stress detection of cotton at the seedling stage, which can be further deployed in mobile platforms for high-throughput screening in the field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zqfxc发布了新的文献求助10
1秒前
zhuxl完成签到,获得积分10
2秒前
威康宇宙完成签到,获得积分10
2秒前
2秒前
3秒前
cchen0902发布了新的文献求助10
3秒前
在水一方应助cmh采纳,获得10
3秒前
一年能吃800篇sci吗完成签到,获得积分10
3秒前
慕青应助ww采纳,获得10
3秒前
3秒前
3秒前
rosexu完成签到,获得积分10
4秒前
jhlz5879完成签到,获得积分10
4秒前
百宝发布了新的文献求助10
4秒前
Ye发布了新的文献求助10
4秒前
lalala应助搞怪网络采纳,获得20
5秒前
FashionBoy应助渝州人采纳,获得10
5秒前
5秒前
6秒前
6秒前
科研通AI5应助xy采纳,获得10
6秒前
曼冬发布了新的文献求助10
6秒前
上官若男应助sjxx采纳,获得10
6秒前
7秒前
守墓人完成签到 ,获得积分10
7秒前
榴莲完成签到,获得积分10
7秒前
对照完成签到 ,获得积分10
7秒前
8秒前
8秒前
初闻完成签到,获得积分10
9秒前
惠惠发布了新的文献求助10
9秒前
慕青应助a1oft采纳,获得10
10秒前
叶十七完成签到,获得积分10
10秒前
汉堡包应助宇_采纳,获得10
10秒前
SciGPT应助H71000A采纳,获得10
10秒前
侦察兵发布了新的文献求助10
11秒前
自然乐松关注了科研通微信公众号
11秒前
zqfxc完成签到,获得积分10
11秒前
sumeiling完成签到,获得积分20
11秒前
朴素的鸡完成签到,获得积分20
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794