Multi-Task Multi-Fidelity Machine Learning for Reliability-Based Design With Partially Observed Information

计算机科学 可靠性(半导体) 维数之咒 忠诚 替代模型 贝叶斯优化 机器学习 任务(项目管理) 人工智能 数据挖掘 可靠性工程 工程类 系统工程 电信 功率(物理) 物理 量子力学
作者
Yanwen Xu,Wu Hao,Zheng Liu,Pingfeng Wang
标识
DOI:10.1115/detc2023-117032
摘要

Abstract In complex engineering systems, assessing system performance and underlying failure mechanisms with respect to uncertain variables requires repeated testing, which is often limited by test capacity and computational budget and fails to accurately capture the complex system’s high-dimensional nature. A method that can efficiently use information that is partially available from various sources is thus urgently needed for complex system design. This paper presents a multi-fidelity surrogate modeling strategy that efficiently utilizes partially observed information (POI) from various sources, including data with different fidelity and dimensionality. Additionally, in reliability analysis and design optimization tasks, multiple constraints must be evaluated concurrently for each design point. However, as the complexity of systems increases, the number of constraints grows, resulting in a rapid increase in computational effort. Therefore, a multi-fidelity multi-task surrogate modeling framework with POI was proposed to aid in the development of surrogate models, which increases the effectiveness of reliability analysis. The proposed multi-fidelity multi-task machine learning (MFMT-ML) model utilizes a Bayesian framework, which significantly improves the predictive model’s performance and provides uncertainty quantification of the prediction. It also offers premium features such as using multi-fidelity sources of data points and POI, allowing simultaneous evaluation of multiple constraints through a single test, and offering a highly accurate and efficient reliability-based design optimization framework through knowledge sharing. By incorporating partially observed information from various sources, our approach offers a promising avenue for improving system performance prediction accuracy and efficiency while reducing the cost and complexity of complex system design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
现代秦始皇完成签到 ,获得积分10
1秒前
2秒前
JY完成签到,获得积分10
3秒前
小黑完成签到,获得积分10
4秒前
深情安青应助Sky采纳,获得10
4秒前
莉莉丝完成签到,获得积分20
4秒前
满意紫菜完成签到,获得积分20
4秒前
科研通AI2S应助极度采纳,获得10
4秒前
西酞普绿发布了新的文献求助10
5秒前
5秒前
5秒前
小蘑菇应助真谛采纳,获得10
7秒前
山城小肘子关注了科研通微信公众号
7秒前
SYLH应助李梓明采纳,获得10
7秒前
orixero应助土豆土豆采纳,获得10
10秒前
10秒前
牧秋妈妈完成签到,获得积分10
10秒前
11秒前
aaaaaa发布了新的文献求助10
11秒前
英姑应助苗条菠萝采纳,获得30
12秒前
12秒前
牧秋妈妈发布了新的文献求助10
14秒前
15秒前
15秒前
灰灰发布了新的文献求助10
17秒前
顺利的历发布了新的文献求助10
17秒前
18秒前
xiangdannuli发布了新的文献求助10
18秒前
19秒前
19秒前
20秒前
单薄店员发布了新的文献求助10
21秒前
22秒前
22秒前
22秒前
真谛完成签到,获得积分10
23秒前
深情安青应助清新的Q采纳,获得10
24秒前
25秒前
厘米完成签到,获得积分10
25秒前
肥而不腻的羚羊完成签到,获得积分10
26秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962593
求助须知:如何正确求助?哪些是违规求助? 3508565
关于积分的说明 11141766
捐赠科研通 3241330
什么是DOI,文献DOI怎么找? 1791510
邀请新用户注册赠送积分活动 872888
科研通“疑难数据库(出版商)”最低求助积分说明 803483