Multi-Task Multi-Fidelity Machine Learning for Reliability-Based Design With Partially Observed Information

计算机科学 可靠性(半导体) 维数之咒 忠诚 替代模型 贝叶斯优化 机器学习 任务(项目管理) 人工智能 数据挖掘 可靠性工程 工程类 系统工程 电信 功率(物理) 物理 量子力学
作者
Yanwen Xu,Wu Hao,Zheng Liu,Pingfeng Wang
标识
DOI:10.1115/detc2023-117032
摘要

Abstract In complex engineering systems, assessing system performance and underlying failure mechanisms with respect to uncertain variables requires repeated testing, which is often limited by test capacity and computational budget and fails to accurately capture the complex system’s high-dimensional nature. A method that can efficiently use information that is partially available from various sources is thus urgently needed for complex system design. This paper presents a multi-fidelity surrogate modeling strategy that efficiently utilizes partially observed information (POI) from various sources, including data with different fidelity and dimensionality. Additionally, in reliability analysis and design optimization tasks, multiple constraints must be evaluated concurrently for each design point. However, as the complexity of systems increases, the number of constraints grows, resulting in a rapid increase in computational effort. Therefore, a multi-fidelity multi-task surrogate modeling framework with POI was proposed to aid in the development of surrogate models, which increases the effectiveness of reliability analysis. The proposed multi-fidelity multi-task machine learning (MFMT-ML) model utilizes a Bayesian framework, which significantly improves the predictive model’s performance and provides uncertainty quantification of the prediction. It also offers premium features such as using multi-fidelity sources of data points and POI, allowing simultaneous evaluation of multiple constraints through a single test, and offering a highly accurate and efficient reliability-based design optimization framework through knowledge sharing. By incorporating partially observed information from various sources, our approach offers a promising avenue for improving system performance prediction accuracy and efficiency while reducing the cost and complexity of complex system design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jjjj721发布了新的文献求助10
刚刚
传奇3应助追寻的藏花采纳,获得10
1秒前
cgavskobe完成签到,获得积分10
1秒前
blUe发布了新的文献求助10
1秒前
2秒前
天天快乐应助roy2929采纳,获得10
2秒前
2秒前
伊伊发布了新的文献求助10
3秒前
流星雨完成签到,获得积分10
4秒前
爱吃香菜发布了新的文献求助10
4秒前
Jj7完成签到,获得积分10
5秒前
zz完成签到 ,获得积分10
6秒前
jtG发布了新的文献求助10
7秒前
ppppppp_76完成签到 ,获得积分10
7秒前
Dallas发布了新的文献求助10
8秒前
yayyaya完成签到 ,获得积分10
8秒前
8秒前
慕青应助王蕊采纳,获得10
8秒前
充电宝应助waive采纳,获得10
9秒前
9秒前
lllllll完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
12秒前
李健的小迷弟应助jtG采纳,获得10
13秒前
小杨完成签到,获得积分10
13秒前
南境发布了新的文献求助10
14秒前
14秒前
15秒前
Orange应助54zxy采纳,获得10
16秒前
16秒前
搜集达人应助lllllll采纳,获得10
16秒前
啵清啵发布了新的文献求助10
17秒前
18秒前
JamesPei应助郎治宇采纳,获得10
18秒前
包谷冬完成签到 ,获得积分0
19秒前
一条迷人的咸鱼干完成签到,获得积分10
19秒前
小宝爸爸发布了新的文献求助10
19秒前
灯灯发布了新的文献求助10
19秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160291
求助须知:如何正确求助?哪些是违规求助? 2811389
关于积分的说明 7892168
捐赠科研通 2470409
什么是DOI,文献DOI怎么找? 1315568
科研通“疑难数据库(出版商)”最低求助积分说明 630869
版权声明 602038