亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Reinforcement Learning-Based Dynamic Order Recommendation for On-Demand Food Delivery

强化学习 钢筋 食物运送 订单(交换) 计算机科学 人工智能 业务 心理学 营销 社会心理学 财务
作者
Xing Wang,Ling Wang,Chenxin Dong,Hao Ren,Ke Xing
出处
期刊:Tsinghua Science & Technology [Tsinghua University Press]
卷期号:29 (2): 356-367 被引量:8
标识
DOI:10.26599/tst.2023.9010041
摘要

On-demand food delivery (OFD) is gaining more and more popularity in modern society. As a kernel order assignment manner in OFD scenario, order recommendation directly influences the delivery efficiency of the platform and the delivery experience of riders. This paper addresses the dynamism of the order recommendation problem and proposes a reinforcement learning solution method. An actor-critic network based on long short term memory (LSTM) unit is designed to deal with the order-grabbing conflict between different riders. Besides, three rider sequencing rules are accordingly proposed to match different time steps of the LSTM unit with different riders. To test the performance of the proposed method, extensive experiments are conducted based on real data from Meituan delivery platform. The results demonstrate that the proposed reinforcement learning based order recommendation method can significantly increase the number of grabbed orders and reduce the number of order-grabbing conflicts, resulting in better delivery efficiency and experience for the platform and riders.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
19秒前
19秒前
21秒前
ucas大菠萝完成签到,获得积分10
21秒前
ysx完成签到 ,获得积分10
22秒前
24秒前
hh发布了新的文献求助10
28秒前
00发布了新的文献求助10
29秒前
jam发布了新的文献求助30
31秒前
赘婿应助结实的凉面采纳,获得10
34秒前
脑洞疼应助暴躁火龙果采纳,获得10
34秒前
jam完成签到,获得积分10
40秒前
Hello应助暴躁火龙果采纳,获得10
40秒前
43秒前
小二郎应助Joy采纳,获得30
44秒前
以七完成签到 ,获得积分10
46秒前
科研通AI6.1应助炙热成仁采纳,获得10
49秒前
51秒前
田様应助暴躁火龙果采纳,获得10
52秒前
852应助科研通管家采纳,获得10
52秒前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
陳.发布了新的文献求助10
1分钟前
陈的住气完成签到 ,获得积分10
1分钟前
1分钟前
任性的皮皮虾完成签到,获得积分10
1分钟前
1分钟前
1分钟前
悦耳青梦发布了新的文献求助10
1分钟前
Pengfei_Soil发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
yyds完成签到,获得积分0
1分钟前
1分钟前
嘻嘻嘻完成签到,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746540
求助须知:如何正确求助?哪些是违规求助? 5435517
关于积分的说明 15355531
捐赠科研通 4886528
什么是DOI,文献DOI怎么找? 2627297
邀请新用户注册赠送积分活动 1575762
关于科研通互助平台的介绍 1532510