Neural Network-Based Hierarchical Fault-Tolerant Affine Formation Control for Heterogeneous Nonlinear Multi-Agent Systems

人工神经网络 仿射变换 容错 非线性系统 控制理论(社会学) 计算机科学 多智能体系统 分布式计算 人工智能 控制(管理) 数学 量子力学 物理 纯数学
作者
Haiqing Wang,Jiuxiang Dong
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-9 被引量:2
标识
DOI:10.1109/tits.2023.3322689
摘要

Under a premise of universal rigidity, the affine formation control method based on stress matrix can solve the formation maneuvering problem well. However, a failure of the agent in the system can easily destroy this condition of rigidity. Consequently, a fault-tolerant affine formation control problem for multi-agent systems (MASs) with partial loss-of-effectiveness (PLOE) and bias faults is investigated. In this paper, a neural network-based hierarchical fault-tolerant affine formation (NN-HFAF) control strategy is proposed for heterogeneous nonlinear MASs. Firstly, some virtual systems are built as a link between leaders and followers. The virtual systems affinely locate their target positions in the formation maneuvers through the real-time positions of leaders. Then, an adaptive fault-tolerant control algorithm is designed for followers to tracking the virtual systems. It can effectively prevents the impact of a few agent failures from spreading to the whole network. And the system dynamics of agents in the network are considered to be heterogeneous. Moreover, radial basis function neural networks (RBF-NNs) are introduced to approximate the nonlinear functions of dynamic systems, the computational burden is reduced by adopting the single parameter learning mechanism. Finally, the numerical simulations are given to verify the efficiency of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZQZ发布了新的文献求助10
1秒前
菠萝完成签到 ,获得积分10
1秒前
鳗鱼三毒发布了新的文献求助10
1秒前
SciGPT应助jiajia666采纳,获得10
2秒前
anqi完成签到,获得积分10
2秒前
2秒前
冫义斗完成签到 ,获得积分10
3秒前
4秒前
吕元乔完成签到,获得积分20
5秒前
5秒前
Myrrha完成签到,获得积分10
5秒前
5秒前
7秒前
8秒前
善学以致用应助大炮台采纳,获得10
8秒前
诚c发布了新的文献求助100
8秒前
sxr完成签到,获得积分10
9秒前
9秒前
斯文明杰发布了新的文献求助10
9秒前
9秒前
11秒前
11秒前
11秒前
Ann发布了新的文献求助10
12秒前
陈陈陈完成签到,获得积分10
12秒前
12秒前
13秒前
不舍天真发布了新的文献求助10
13秒前
13秒前
H1发布了新的文献求助10
13秒前
14秒前
完美世界应助飞夜采纳,获得10
14秒前
未来发布了新的文献求助10
14秒前
WWXWWX应助cruise采纳,获得10
14秒前
15秒前
安静大树发布了新的文献求助10
16秒前
16秒前
17秒前
jiajia666发布了新的文献求助10
17秒前
斯文明杰完成签到,获得积分10
19秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3454789
求助须知:如何正确求助?哪些是违规求助? 3049989
关于积分的说明 9020079
捐赠科研通 2738731
什么是DOI,文献DOI怎么找? 1502219
科研通“疑难数据库(出版商)”最低求助积分说明 694453
邀请新用户注册赠送积分活动 693143