高氯酸铵
化学
热分解
反应速率常数
分解
活化能
推进剂
铝
反应机理
物理化学
热力学
动力学
有机化学
物理
量子力学
催化作用
作者
Xinping Yan,Ruixuan Xu,Hongqi Nie,Qi‐Long Yan,Jun Liu,Yan Sun
标识
DOI:10.1021/acs.jpca.3c03935
摘要
There is an interactive effect between ammonium perchlorate (AP) and aluminum (Al) powder during the combustion process of composite solid propellants, but the mechanism of this effect is still lacking. Using quantum chemical methods, we investigated this mechanism from a molecular perspective. The interaction process between Al and AP was analyzed by comparing the chemical bond changes between the atoms during the reaction process of the Al/AP system and the AP unimolecular thermal decomposition system. The results show that Al atoms alter the reaction mechanism of AP thermal decomposition, significantly decreasing the activation energy of AP decomposition at high temperature but increasing that at low temperature. Meanwhile, the temperature-dependent rate constant of each basic reaction was calculated by transition state theory. The rate constants increase with temperature. Under high temperature and pressure, Al can increase the high-temperature decomposition rate of AP by up to 1-3 orders of magnitude.
科研通智能强力驱动
Strongly Powered by AbleSci AI