Universal adversarial backdoor attacks to fool vertical federated learning

后门 计算机科学 任务(项目管理) 人工智能 机器学习 背景(考古学) 脆弱性(计算) 对抗制 计算机安全 数据挖掘 工程类 古生物学 系统工程 生物
作者
Peng Chen,Xin Du,Zhihui Lu,Hongfeng Chai
出处
期刊:Computers & Security [Elsevier BV]
卷期号:137: 103601-103601 被引量:1
标识
DOI:10.1016/j.cose.2023.103601
摘要

Vertical federated learning (VFL) is a privacy-preserving distribution learning paradigm that enables participants, owning different features of the same sample space to train a machine learning model collaboratively while retaining their data locally. This paradigm facilitates improved efficiency and security for participants such as financial or medical fields, making VFL an essential component of data-driven Artificial Intelligence systems. Nevertheless, the partitioned structure of VFL can be exploited by adversaries to inject a backdoor, enabling them to manipulate the VFL predictions. In this paper, we aim to investigate the vulnerability of VFL in the context of binary classification tasks. To this end, we define a threat model for backdoor attacks in VFL and introduce a universal adversarial backdoor (UAB) attack to poison the predictions of VFL. The UAB attack, consisting of universal trigger generation and clean-label backdoor injection, is incorporated during the VFL training at specific iterations. This is achieved by alternately optimizing VFL sub-problems' universal trigger and model parameters. Our work distinguishes itself from existing studies on designing backdoor attacks for VFL, as those require the knowledge of auxiliary information that is not accessible within the split VFL architecture. In contrast, our approach does not require additional data to execute the attack. On the real-world datasets, our approach surpasses existing state-of-the-art methods, achieving up to 100% backdoor task performance while maintaining the main task performance. Our results in this paper make a major advance in revealing the hidden backdoor risks of VFL, hence paving the way for the future development of secure VFL. Our results in this paper make a major advance in revealing the hidden backdoor risks of VFL, hence paving the way for the future development of secure VFL applications such as finance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
土豆子完成签到,获得积分10
刚刚
hhhhh应助娃娃鱼采纳,获得10
1秒前
莫失莫忘发布了新的文献求助10
1秒前
张子文发布了新的文献求助10
1秒前
曾经念真给lbx的求助进行了留言
1秒前
2秒前
桥木有舟完成签到,获得积分10
2秒前
Mr.Young完成签到,获得积分10
2秒前
我迷了鹿发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
佳佳发布了新的文献求助10
3秒前
道心完成签到,获得积分10
3秒前
淘淘完成签到,获得积分10
4秒前
小怪完成签到,获得积分10
4秒前
moonlin完成签到 ,获得积分10
4秒前
WLL完成签到,获得积分10
5秒前
5秒前
JoshuaChen发布了新的文献求助10
6秒前
6秒前
6秒前
苏silence发布了新的文献求助10
6秒前
8秒前
机智一曲发布了新的文献求助10
8秒前
我迷了鹿完成签到,获得积分10
9秒前
kin完成签到 ,获得积分10
9秒前
My完成签到,获得积分10
9秒前
9秒前
slj完成签到,获得积分10
10秒前
Leon发布了新的文献求助10
11秒前
StonesKing发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
研友_VZG7GZ应助乔七采纳,获得10
12秒前
EPP233发布了新的文献求助10
12秒前
13秒前
13秒前
乐观睫毛发布了新的文献求助10
13秒前
落花生完成签到,获得积分10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582