Universal adversarial backdoor attacks to fool vertical federated learning

后门 计算机科学 任务(项目管理) 人工智能 机器学习 背景(考古学) 脆弱性(计算) 对抗制 计算机安全 数据挖掘 工程类 生物 古生物学 系统工程
作者
Peng Chen,Xin Du,Zhihui Lu,Hongfeng Chai
出处
期刊:Computers & Security [Elsevier]
卷期号:137: 103601-103601 被引量:1
标识
DOI:10.1016/j.cose.2023.103601
摘要

Vertical federated learning (VFL) is a privacy-preserving distribution learning paradigm that enables participants, owning different features of the same sample space to train a machine learning model collaboratively while retaining their data locally. This paradigm facilitates improved efficiency and security for participants such as financial or medical fields, making VFL an essential component of data-driven Artificial Intelligence systems. Nevertheless, the partitioned structure of VFL can be exploited by adversaries to inject a backdoor, enabling them to manipulate the VFL predictions. In this paper, we aim to investigate the vulnerability of VFL in the context of binary classification tasks. To this end, we define a threat model for backdoor attacks in VFL and introduce a universal adversarial backdoor (UAB) attack to poison the predictions of VFL. The UAB attack, consisting of universal trigger generation and clean-label backdoor injection, is incorporated during the VFL training at specific iterations. This is achieved by alternately optimizing VFL sub-problems' universal trigger and model parameters. Our work distinguishes itself from existing studies on designing backdoor attacks for VFL, as those require the knowledge of auxiliary information that is not accessible within the split VFL architecture. In contrast, our approach does not require additional data to execute the attack. On the real-world datasets, our approach surpasses existing state-of-the-art methods, achieving up to 100% backdoor task performance while maintaining the main task performance. Our results in this paper make a major advance in revealing the hidden backdoor risks of VFL, hence paving the way for the future development of secure VFL. Our results in this paper make a major advance in revealing the hidden backdoor risks of VFL, hence paving the way for the future development of secure VFL applications such as finance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华笑笑发布了新的文献求助10
3秒前
4秒前
asdfghjkl完成签到,获得积分10
8秒前
bkagyin应助Amadeus采纳,获得10
8秒前
etzel应助含糊的大侠采纳,获得10
9秒前
122完成签到 ,获得积分10
10秒前
10秒前
11秒前
11秒前
mini完成签到,获得积分10
13秒前
幽默的卿发布了新的文献求助10
14秒前
五六七发布了新的文献求助10
15秒前
15秒前
etzel应助Zngas采纳,获得30
18秒前
sumu完成签到,获得积分10
18秒前
19秒前
蜗牛的世界完成签到,获得积分10
20秒前
21秒前
21秒前
22秒前
五六七完成签到,获得积分20
23秒前
mgg完成签到,获得积分10
23秒前
24秒前
调皮的绮山关注了科研通微信公众号
25秒前
fangzhang发布了新的文献求助30
25秒前
lsy发布了新的文献求助10
26秒前
不吃香菜的爆炸小飞鱼完成签到 ,获得积分10
26秒前
26秒前
直率的尔柳完成签到,获得积分10
27秒前
wrx发布了新的文献求助30
27秒前
模糊中正应助DAJI采纳,获得30
29秒前
初识发布了新的文献求助30
29秒前
研友_VZG7GZ应助加油干采纳,获得10
29秒前
研友_nxV4m8完成签到,获得积分10
31秒前
科研民工考拉完成签到,获得积分10
31秒前
幽默厉完成签到,获得积分10
36秒前
36秒前
dddd发布了新的文献求助10
38秒前
38秒前
123完成签到,获得积分10
40秒前
高分求助中
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 520
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464444
求助须知:如何正确求助?哪些是违规求助? 3057817
关于积分的说明 9058616
捐赠科研通 2747919
什么是DOI,文献DOI怎么找? 1507640
科研通“疑难数据库(出版商)”最低求助积分说明 696603
邀请新用户注册赠送积分活动 696200