XGBoost model predicts acute lung injury after acute pancreatitis

急性胰腺炎 天冬氨酸转氨酶 接收机工作特性 医学 逻辑回归 机器学习 血尿素氮 内科学 支持向量机 动脉血 胃肠病学 人工智能 计算机科学 肌酐 化学 生物化学 碱性磷酸酶
作者
Weiwei Lu,Xi Chen,Wei Liu,Wenjie Cai,Zhu Sheng-liang,Yunkun Wang,Xiaosu Wang
出处
期刊:Signa Vitae [MRE Press]
被引量:2
标识
DOI:10.22514/sv.2023.087
摘要

To develop an XGBoost model to predict the occurrence of acute lung injury (ALI) in patients with acute pancreatitis (AP). Using the case database of Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, 1231 cases suffering from AP were screened, and after 137 variables were identified, the clinical characteristics of the samples were statistically analyzed, and the data were randomly divided into a training set (75%) to build the XGBoost model and a test set (25%) for validation. Finally, the performance of the model was evaluated based on accuracy, specificity, sensitivity, and subject characteristics working characteristic curves. The model performance is also compared with that of three other commonly used machine learning algorithms (support vector machine (SVM), logistic regression, and random forest). The age and laboratory tests of patients with AP combined with ALI differed from those of patients without combined acute lung injury. The area under the receiver operating characteristic (ROC) curve of the test set after model evaluation was 0.9534, the specificity was 0.7333, and the sensitivity was 0.7857, with arterial partial pressure of oxygen, bile acid, aspartate transaminase, urea nitrogen, and arterial blood pH as its most important influencing factors. In this study, the XGBoost model has advantages compared with other three machine learning algorithms. The XGBoost model has potential in the application of predicting acute lung injury after acute pancreatitis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
有谁共鸣发布了新的文献求助10
1秒前
桀桀桀完成签到,获得积分10
1秒前
胡萝卜应助负责的方盒采纳,获得10
2秒前
高大雁兰发布了新的文献求助10
3秒前
4秒前
专注的曼容完成签到,获得积分20
4秒前
5秒前
科研通AI5应助JIA采纳,获得30
6秒前
学术小王子完成签到,获得积分10
6秒前
zyj发布了新的文献求助10
9秒前
天明完成签到,获得积分10
12秒前
13秒前
14秒前
Akim应助飞翔的企鹅采纳,获得30
15秒前
收拾收拾发布了新的文献求助30
15秒前
活力安南完成签到,获得积分10
18秒前
robinhood完成签到,获得积分10
18秒前
过时的映雁完成签到,获得积分10
18秒前
专注的班发布了新的文献求助10
19秒前
田様应助276868sxzz采纳,获得10
20秒前
first发布了新的文献求助10
20秒前
李健的粉丝团团长应助zyj采纳,获得10
20秒前
科研通AI5应助安殿夏采纳,获得10
22秒前
潘宋完成签到,获得积分10
22秒前
研友_LX66qZ完成签到,获得积分10
22秒前
HMONEY应助街霸采纳,获得10
22秒前
23秒前
24秒前
24秒前
Nzee完成签到,获得积分10
24秒前
JIA完成签到,获得积分20
25秒前
25秒前
华仔应助mice33采纳,获得10
25秒前
共享精神应助高大雁兰采纳,获得10
26秒前
CodeCraft应助爬不起来采纳,获得10
27秒前
yy应助简易采纳,获得10
29秒前
丘比特应助nnn采纳,获得10
30秒前
first完成签到,获得积分10
31秒前
JIA发布了新的文献求助30
31秒前
wzz完成签到,获得积分10
31秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740628
求助须知:如何正确求助?哪些是违规求助? 3283472
关于积分的说明 10035486
捐赠科研通 3000287
什么是DOI,文献DOI怎么找? 1646438
邀请新用户注册赠送积分活动 783615
科研通“疑难数据库(出版商)”最低求助积分说明 750411