亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An approach of using social media data to detect the real time spatio-temporal variations of urban waterlogging

内涝(考古学) 社会化媒体 计算机科学 微博 网络爬虫 环境科学 水文学(农业) 地理 地质学 万维网 生态学 岩土工程 生物 湿地
作者
Yilin Chen,Maochuan Hu,Xiaohong Chen,Feng Wang,Bingjun Liu,Ziwen Huo
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:625: 130128-130128 被引量:7
标识
DOI:10.1016/j.jhydrol.2023.130128
摘要

Urban waterlogging has occurred frequently in recent years due to the impact of climate change and human activities. Real-time waterlogging information is crucial for disaster emergency management, but how to quickly obtain such information remains challenging. Social media data has been widely used to derive damage information because of its high real-time response, low acquisition cost, and high content integration. In this study, we propose an approach to extract real-time waterlogging points from social media data (Sina Weibo). First, social media data is obtained through web crawler technology; Then, de-duplication and de-noising methods are used to filter the data; Finally, a waterlogging point extraction method based on deep learning BERT-BiLSTM-CRF model is proposed to extract waterlogging points. Taking the "7.20" rainstorm in Zhengzhou as an example, there was a rapid increase in the number of social media data during urban waterlogging. Social media data is highly sensitive to urban waterlogging disasters caused by extreme rainstorms. On the day with the heaviest rainfall (July 20), the number of Weibo waterlogging points (331) in the central city was 267 more than the official waterlogging points (64). There were many more Weibo-derived waterlogging points than the real-time official published waterlogging points. The waterlogging points obtained by this approach covered the official published real-time waterlogging points accounted for no less than 82% and they were mostly located around roads, especially in low-lying areas. In general, we demonstrate the feasibility and accuracy of social media data on rapid detection of real-time spatiotemporal variations of waterlogging caused by extreme rainstorms. Urban waterlogging disaster information extracted from social media data can rapidly reflect the real-time spatiotemporal variations of urban waterlogging disasters, and can effectively cover and supplement data reported by government agencies, and can provide data support for urban waterlogging disaster prevention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jing给jing的求助进行了留言
1分钟前
1分钟前
Ava应助lalalatiancai采纳,获得10
1分钟前
1分钟前
CodeCraft应助害羞的采波采纳,获得10
1分钟前
1分钟前
lalalatiancai发布了新的文献求助10
1分钟前
xiezhuochun完成签到 ,获得积分10
1分钟前
lalalatiancai完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
土味霸总发布了新的文献求助10
2分钟前
2分钟前
景行行止完成签到 ,获得积分10
2分钟前
满地发布了新的文献求助20
2分钟前
土味霸总完成签到,获得积分20
3分钟前
3分钟前
3分钟前
满地完成签到,获得积分10
3分钟前
火星上的菲鹰应助早坂爱采纳,获得10
4分钟前
传奇3应助早坂爱采纳,获得10
4分钟前
情怀应助害羞的采波采纳,获得10
4分钟前
4分钟前
jing发布了新的文献求助10
4分钟前
田yg完成签到,获得积分10
4分钟前
4分钟前
CQC发布了新的文献求助20
4分钟前
DYZ完成签到,获得积分10
4分钟前
jing完成签到,获得积分10
4分钟前
5分钟前
5分钟前
wanci应助科研通管家采纳,获得10
5分钟前
lalala完成签到 ,获得积分10
5分钟前
5分钟前
刘泓锦发布了新的文献求助30
5分钟前
CQC完成签到,获得积分20
6分钟前
852应助害羞的采波采纳,获得10
6分钟前
汉堡包应助小乔采纳,获得10
6分钟前
blossoms完成签到 ,获得积分10
6分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671249
求助须知:如何正确求助?哪些是违规求助? 3228122
关于积分的说明 9778506
捐赠科研通 2938375
什么是DOI,文献DOI怎么找? 1609969
邀请新用户注册赠送积分活动 760503
科研通“疑难数据库(出版商)”最低求助积分说明 735991