小胶质细胞
星形胶质细胞
神经炎症
实验性自身免疫性脑脊髓炎
多发性硬化
生物
髓鞘
中枢神经系统
细胞生物学
神经科学
免疫学
炎症
作者
Julie Ahn,Yusra Islam,Cheryl Clarkson-Paredes,Molly Karl,Robert H. Miller
标识
DOI:10.1016/j.nbd.2023.106290
摘要
Multiple sclerosis (MS) is characterized by a compromised blood-brain barrier (BBB) resulting in central nervous system (CNS) entry of peripheral lymphocytes, including T cells and B cells. While T cells have largely been considered the main contributors to neuroinflammation in MS, the success of B cell depletion therapies suggests an important role for B cells in MS pathology. Glial cells in the CNS are essential components in both disease progression and recovery, raising the possibility that they represent targets for B cell functions. Here, we examine astrocyte and microglia responses to B cell depleting treatments in an animal model of MS, experimental autoimmune encephalomyelitis (EAE). B cell depleted EAE animals had markedly reduced disease severity and myelin damage accompanied by reduced microglia and astrocyte reactivity 20 days after symptom onset. To identify potential initial mechanisms mediating functional changes following B cell depletion, astrocyte and microglia transcriptomes were analyzed 3 days following B cell depletion. In control EAE animals, transcriptomic analysis revealed astrocytic inflammatory pathways were activated and microglial influence on neuronal function were inhibited. Following B cell depletion, initial functional recovery was associated with an activation of astrocytic pathways linked with restoration of neurovascular integrity and of microglial pathways associated with neuronal function. These studies reveal an important role for B cell depletion in influencing glial function and CNS vasculature in an animal model of MS.
科研通智能强力驱动
Strongly Powered by AbleSci AI