原肌球蛋白受体激酶B
mTORC1型
行为绝望测验
抗抑郁药
神经营养因子
突触可塑性
脑源性神经营养因子
医学
神经科学
PI3K/AKT/mTOR通路
药理学
心理学
内科学
生物
海马体
信号转导
细胞生物学
受体
作者
Yangyang Xu,Jie Zhang,Linyao Yu,Wei Zhang,Yingtian Zhang,Yaoqin Shi,Shuping Zhang,William P. Meehan,Jingwei Tian
摘要
Abstract Major depressive disorder (MDD) is a severe mental disorder associated with high rates of morbidity and mortality. Current first‐line pharmacotherapies for MDD are based on enhancement of monoaminergic neurotransmission, but these antidepressants are still insufficient and produce significant side‐effects. Consequently, the development of novel antidepressants and therapeutic targets is desired. Engeletin, a natural Smilax glabra rhizomilax derivative, is a compound with proven efficacy in treating ischemic stroke, yet its therapeutic effects and mechanisms for depression remain unexplored. The effects of engeletin were assessed in the forced swimming test (FST) and tail suspension test (TST) in mice. Engeletin was also investigated in the chronic restraint stress (CRS) mouse model of depression with fluoxetine (FLX) as the positive control. Changes in prefrontal cortex (PFC) spine density, synaptic plasticity‐linked protein expressions and the brain‐derived neurotrophic factor (BDNF)‐tyrosine kinase B (TrkB)‐ mammalian target of rapamycin complex 1 (mTORC1) signalling pathway after chronic stress and engeletin treatment were then investigated. The TrkB and mTORC1 selective inhibitors, ANA‐12 and rapamycin, respectively, were utilized to assess the engeletin's antidepressive mechanisms. Our data shows that engeletin exhibited antidepressant‐like activity in the FST and TST in mice without affecting locomotor activity. Furthermore, it exhibited efficiency against the depression of CRS model. Moreover, it enhanced the BDNF‐TrkB‐mTORC1 pathway in the PFC during CRS and altered the reduction in dendritic spine density and levels of synaptic plasticity‐linked protein induced by CRS. In conclusion, engeletin has antidepressant activity via activation of the BDNF‐TrkB‐mTORC1 signalling pathway and upregulation of PFC synaptic plasticity.
科研通智能强力驱动
Strongly Powered by AbleSci AI