超级电容器
活性炭
碳纤维
材料科学
比表面积
煤
化学工程
电化学
电解质
电容
纳米技术
电极
化学
吸附
有机化学
复合材料
催化作用
复合数
物理化学
工程类
作者
Yaojie Zhang,Jianbo Jia,Yue Sun,Bing Xu,Zhendong Jiang,Xiaoxiao Qu,Chuanxiang Zhang
出处
期刊:Nanomaterials
[Multidisciplinary Digital Publishing Institute]
日期:2023-11-07
卷期号:13 (22): 2909-2909
被引量:7
摘要
The development of coal-based activated carbon for supercapacitors provides a robust and effective approach toward the clean and efficient use of coal, and it also offers high-quality and low-cost raw materials for energy storage devices. However, the one-step activation method for preparing coal-based activated carbon has problems, such as difficulty in introducing surface-functional groups and high KOH dosage. In our work, activated carbon was prepared through an effective strategy of oxidation and KOH activation with a low KOH content by employing coal-based carbon dots as raw material. The influence of temperature during the KOH activation of carbon dots on a specific surface area, pore structure, and various quantities and types of surface-functional groups, as well as on the electrochemical performance of supercapacitors, was systematically studied. The as-prepared sample, with the alkali–carbon ratio of 0.75, processes a large specific surface area (1207 m2 g−1) and abundant surface-functional groups, which may provide enormous active sites and high wettability, thus bringing in high specific capacitance and boosted electrochemical performances. The oxygen and nitrogen content of the activated carbon decreases while the carbon content increases, and the activation temperature also increases. The as-prepared activated carbon reaches the highest specific capacitance of 202.2 F g−1 in a 6 M KOH electrolyte at a current density of 10 A g−1. This study provides new insight into the design of high-performance activated carbon and new avenues for the application of coal-based carbon dots.
科研通智能强力驱动
Strongly Powered by AbleSci AI