CNN-LSTM Hybrid Model to Promote Signal Processing of Ultrasonic Guided Lamb Waves for Damage Detection in Metallic Pipelines

卷积神经网络 计算机科学 管道运输 稳健性(进化) 超声波传感器 人工智能 深度学习 信号处理 特征提取 无损检测 噪音(视频) 模式识别(心理学) 声学 工程类 数字信号处理 计算机硬件 机械工程 物理 基因 图像(数学) 量子力学 生物化学 化学
作者
Li Shang,Zi Zhang,Fujian Tang,Qi Cao,Hong Pan,Zhibin Lin
出处
期刊:Sensors [MDPI AG]
卷期号:23 (16): 7059-7059 被引量:10
标识
DOI:10.3390/s23167059
摘要

The ultrasonic guided lamb wave approach is an effective non-destructive testing (NDT) method used for detecting localized mechanical damage, corrosion, and welding defects in metallic pipelines. The signal processing of guided waves is often challenging due to the complexity of the operational conditions and environment in the pipelines. Machine learning approaches in recent years, including convolutional neural networks (CNN) and long short-term memory (LSTM), have exhibited their advantages to overcome these challenges for the signal processing and data classification of complex systems, thus showing great potential for damage detection in critical oil/gas pipeline structures. In this study, a CNN-LSTM hybrid model was utilized for decoding ultrasonic guided waves for damage detection in metallic pipelines, and twenty-nine features were extracted as input to classify different types of defects in metallic pipes. The prediction capacity of the CNN-LSTM model was assessed by comparing it to those of CNN and LSTM. The results demonstrated that the CNN-LSTM hybrid model exhibited much higher accuracy, reaching 94.8%, as compared to CNN and LSTM. Interestingly, the results also revealed that predetermined features, including the time, frequency, and time-frequency domains, could significantly improve the robustness of deep learning approaches, even though deep learning approaches are often believed to include automated feature extraction, without hand-crafted steps as in shallow learning. Furthermore, the CNN-LSTM model displayed higher performance when the noise level was relatively low (e.g., SNR = 9 or higher), as compared to the other two models, but its prediction dropped gradually with the increase of the noise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wls完成签到 ,获得积分10
刚刚
桂花发布了新的文献求助10
1秒前
糖果发布了新的文献求助10
1秒前
嗯哼完成签到,获得积分20
1秒前
2秒前
2248388622发布了新的文献求助10
2秒前
ddd发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
shiqi1108完成签到 ,获得积分10
5秒前
Ava应助痴情的念蕾采纳,获得10
6秒前
程程程发布了新的文献求助10
7秒前
8秒前
123完成签到,获得积分10
9秒前
Drwang发布了新的文献求助10
9秒前
无辜又菡发布了新的文献求助10
10秒前
yoonkk完成签到,获得积分10
11秒前
慕青应助Unsurpassed采纳,获得10
13秒前
嗯哼发布了新的文献求助20
14秒前
14秒前
在水一方应助糖果采纳,获得10
15秒前
2248388622完成签到,获得积分20
15秒前
英姑应助Drwang采纳,获得10
15秒前
崔昕雨完成签到,获得积分20
16秒前
zhuxing完成签到 ,获得积分10
16秒前
16秒前
hanhan完成签到,获得积分20
17秒前
大个应助浅浅采纳,获得10
17秒前
李明发布了新的文献求助10
18秒前
无辜又菡完成签到,获得积分10
19秒前
小蘑菇应助糖果采纳,获得10
21秒前
cc应助sirhai采纳,获得10
21秒前
Drwang完成签到,获得积分10
22秒前
22秒前
22秒前
orixero应助闪闪羽毛采纳,获得10
24秒前
阿斯蒂和琴酒完成签到 ,获得积分10
24秒前
黑宝坨完成签到 ,获得积分10
25秒前
胡建鹏发布了新的文献求助10
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461239
求助须知:如何正确求助?哪些是违规求助? 3054973
关于积分的说明 9045828
捐赠科研通 2744888
什么是DOI,文献DOI怎么找? 1505722
科研通“疑难数据库(出版商)”最低求助积分说明 695812
邀请新用户注册赠送积分活动 695233