Online health prognosis for lithium-ion batteries under dynamic discharge conditions over wide temperature range

电池(电) 健康状况 航程(航空) 锂离子电池 工作温度 计算机科学 汽车工程 荷电状态 可靠性工程 控制理论(社会学) 功率(物理) 物理 控制(管理) 电气工程 工程类 人工智能 量子力学 航空航天工程
作者
Shizhuo Liu,Yuwei Nie,Aihua Tang,Junfu Li,Quanqing Yu,Chun Wang
出处
期刊:eTransportation [Elsevier BV]
卷期号:18: 100296-100296 被引量:40
标识
DOI:10.1016/j.etran.2023.100296
摘要

Battery state of health assessment is crucial for enabling effective battery safety management and optimization control. However, battery health estimation often becomes difficult when dealing with complex operating conditions and different temperatures. In order to estimate state of health under different temperatures and dynamic operating conditions, battery experiments with multiple operating conditions are conducted. Then, three aging features—discharge voltage integration, discharge time, and net discharge energy—are extracted from the experiment data of lithium-ion batteries, along with two operating condition features—mean current and discharge capacity ratio. By fusing these features, three fused health indicators are obtained. Fused indicators are used as inputs for a Gaussian process regression model to build an accurate capacity estimation model. To account for the influence of temperature on battery health, a method for extracting health indicators over a wide temperature range is proposed. By determining the temperature baseline and the relationship equation between aging and operating condition features in the initial cycle, it is observed that the relationship between health indicators and capacity is not affected by temperature. Based on this, a battery capacity estimation model for a wide temperature range is developed. This method achieves high-precision battery health estimation and can be generalized to different operating conditions, a wide temperature range, and various battery material systems. It offers a new approach for assessing battery health under dynamic operating conditions and holds potential practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cui完成签到,获得积分10
1秒前
睡到自然醒完成签到 ,获得积分10
2秒前
Dawn完成签到,获得积分10
2秒前
科研通AI5应助doubles采纳,获得10
2秒前
Karvs完成签到,获得积分10
2秒前
3秒前
稞小弟发布了新的文献求助10
3秒前
紧张的似狮完成签到 ,获得积分10
3秒前
英俊的含蕾完成签到 ,获得积分10
4秒前
动漫大师发布了新的文献求助10
5秒前
小枫5977完成签到 ,获得积分10
5秒前
liuqi完成签到 ,获得积分10
7秒前
温梦花雨完成签到 ,获得积分10
8秒前
Sene完成签到,获得积分10
10秒前
BruceQ完成签到,获得积分10
11秒前
学术办公室主任完成签到,获得积分10
11秒前
12秒前
szmsnail完成签到,获得积分10
12秒前
洁净的士晋完成签到,获得积分10
12秒前
文明8完成签到,获得积分10
12秒前
王明磊完成签到 ,获得积分10
13秒前
搜集达人应助Zephr采纳,获得10
13秒前
13秒前
完美世界应助Bismarck采纳,获得10
14秒前
叽叽完成签到,获得积分10
15秒前
16秒前
chunjianghua完成签到,获得积分10
18秒前
乐乐应助清新的听南采纳,获得10
18秒前
优美汉堡完成签到,获得积分10
18秒前
风轩轩发布了新的文献求助10
19秒前
19秒前
领导范儿应助ggbod采纳,获得10
20秒前
噜噜噜噜噜完成签到,获得积分10
21秒前
21秒前
24p0发布了新的文献求助10
21秒前
21秒前
chunjianghua发布了新的文献求助10
21秒前
李明完成签到,获得积分10
22秒前
完美世界应助锌小子采纳,获得10
22秒前
叙余完成签到 ,获得积分10
23秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736852
求助须知:如何正确求助?哪些是违规求助? 3280817
关于积分的说明 10020999
捐赠科研通 2997447
什么是DOI,文献DOI怎么找? 1644596
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749698