材料科学
佩多:嘘
自愈水凝胶
标度系数
韧性
聚丙烯酰胺
黄原胶
导电体
复合材料
导电聚合物
聚合物
高分子化学
流变学
制作
医学
替代医学
病理
作者
Qi-Shu Lu,Wenxia Liu,Xiaona Liu,Dehai Yu,Zhaoping Song,Huili Wang,Guodong Li,Shaohua Ge
标识
DOI:10.1007/s40843-023-2524-4
摘要
Conductive hydrogels have attracted tremendous attention in fabricating flexible strain sensors as highly stretchable and biocompatible strain sensing materials. However, fabricating a multifunctional conductive hydrogel simultaneously with high toughness and high sensing performance for monitoring subtle strain is still a great challenge. Herein, we developed a new conductive hydrogel by using poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) and xanthan gum (XG) costabilized soft Ga droplets as conductive materials and using the in situ synthesized and chemically crosslinked polyacrylamide (PAM) as the hydrogel matrix. The PEDOT:PSS simultaneously constitutes a rigid conductive network with Ga droplets, and XG constitutes a rigid sacrificial network. The Ga droplets simultaneously promote the in situ free radical synthesis and crosslinking of PAM at room temperature. The as-prepared XG-PEDOT-Ga-PAM hydrogel shows high toughness, good moldability and adhesiveness. XG-PEDOT-Ga-PAM hydrogel-based strain sensor shows a very high sensitivity (gauge factor = 12.6 in the strain range of 175%–300%), short response/recovery time (250 ms), low detection limit (<0.1%) and excellent durability (>500 cycles). The excellent sensing performance of the hydrogel-based strain sensor enabled it to be highly competent in accurately monitoring various human activities from subtle radial pulses to large-scale human joint bending.
科研通智能强力驱动
Strongly Powered by AbleSci AI