Multi-objective optimization of gas-steam-power system for an integrated iron and steel mill considering carbon emission reduction and cost

还原(数学) 总成本 环境科学 碳纤维 碳价格 工艺工程 多目标优化 温室气体 废物管理 工程类 计算机科学 数学优化 数学 经济 生态学 几何学 算法 复合数 生物 微观经济学
作者
Tingting Xu,Zhaoyi Huo,Tong Wang,Jiawei Lv,Yixuan Han,Lin Mu
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:429: 139404-139404 被引量:2
标识
DOI:10.1016/j.jclepro.2023.139404
摘要

The gas-steam-power system (GSPS) optimization is a complicated optimization problem considering economic and environmental benefits. This paper presents a multiperiod mixed integer linear programming (MILP) model for the GSPS in iron and steel enterprises simultaneously optimizing total cost and carbon emission reduction. It was used to determine the optimal operating strategy for the GSPS under multiobjective conditions. The model considers the influence of a blast furnace with top-gas recycling (TGR-BF) technology on the by-product gas supply and steam and power cogeneration system (SPCS) operation. The results showed that after the optimization aiming at the minimum total cost (Scenario A) and the maximum carbon emission reduction (Scenario B), the system total cost was the lowest (7.78 billion CNY) when the top gas recovery rate was 4%, and the carbon emission reduction peaked at 465,296.76 tCO2 when the top gas recovery rate was 12%. After multiobjective optimization (Scenario C), it was found that the system achieved carbon reduction only when the total cost attained a certain value. A sensitivity analysis revealed that a reduction in the grid emission factor and an increase in the green power increased the carbon emission reduction. When the coal price increased to 1800 CNY/t or the power price decreased to 0.2 CNY/kWh, the optimal system operation strategy was consistent under different optimization objectives. These research results provide guidance for steel enterprises to reduce carbon emissions and total cost.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
默问应助专注的冰巧采纳,获得10
1秒前
1秒前
WMR发布了新的文献求助10
1秒前
儒雅紫夏完成签到,获得积分10
2秒前
斯文败类应助羽宇采纳,获得10
2秒前
汉堡包应助天真千易采纳,获得10
3秒前
斯文败类应助天真千易采纳,获得10
3秒前
上官若男应助天真千易采纳,获得10
3秒前
ni完成签到,获得积分10
3秒前
SciGPT应助天真千易采纳,获得10
3秒前
无花果应助天真千易采纳,获得10
3秒前
烟花应助天真千易采纳,获得10
4秒前
充电宝应助天真千易采纳,获得10
4秒前
Ava应助天真千易采纳,获得30
4秒前
852应助天真千易采纳,获得10
4秒前
英俊的铭应助天真千易采纳,获得10
4秒前
淡然冬灵发布了新的文献求助10
4秒前
杳杳完成签到 ,获得积分10
4秒前
4秒前
JOUJOU完成签到,获得积分20
5秒前
5秒前
eric888应助mmol采纳,获得200
5秒前
5秒前
刘gugu发布了新的文献求助10
5秒前
orixero应助普外科老白采纳,获得10
6秒前
研友_LkD29n完成签到 ,获得积分10
7秒前
Ava应助逸风望采纳,获得10
7秒前
7秒前
科研通AI6应助小黑采纳,获得10
7秒前
量子星尘发布了新的文献求助10
9秒前
JOUJOU发布了新的文献求助10
9秒前
9秒前
Yeshenyue完成签到,获得积分10
9秒前
今后应助从容冷之采纳,获得10
10秒前
congconglyu完成签到,获得积分10
10秒前
大模型应助天真千易采纳,获得10
10秒前
风清扬发布了新的文献求助10
10秒前
天天快乐应助天真千易采纳,获得10
10秒前
负责的皮卡丘应助xiaoting采纳,获得30
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525198
求助须知:如何正确求助?哪些是违规求助? 4615517
关于积分的说明 14548794
捐赠科研通 4553583
什么是DOI,文献DOI怎么找? 2495376
邀请新用户注册赠送积分活动 1475913
关于科研通互助平台的介绍 1447670