A comprehensive DFT + U investigation of electrical, optical, and structural properties of doped CsSnCl3 Perovskite: Unveiling optoelectronic potential

带隙 兴奋剂 材料科学 密度泛函理论 光电子学 桥接(联网) 钙钛矿(结构) 光伏系统 薄膜 宽禁带半导体 太阳能电池 纳米技术 工程物理 计算机科学 化学 物理 结晶学 电气工程 计算化学 计算机网络 工程类
作者
Dholon Kumar Paul,A. K. M. Akther Hossain
出处
期刊:Computational Materials Science [Elsevier]
卷期号:231: 112585-112585 被引量:8
标识
DOI:10.1016/j.commatsci.2023.112585
摘要

In the realm of advanced electrical and photovoltaic applications, inorganic metal halide perovskites (MHP) have captured attention. However, CsSnCl3, a notable member of MHPs, displays limited electro-optical potential due to its substantial bandgap and poor visible spectrum absorbance, which impedes its ability to achieve ideal optoelectronic efficiency. In this study, we used density functional theory (DFT) and the DFT + U technique to compute and investigate the structural, elastic, electrical, and optical properties of pure CsSnCl3 and its doped phases containing Ti, V, Cr, and Mn with different concentrations. Notably, this study represents the first utilization of DFT + U to simultaneously assess the band structure of both pure and doped CsSnCl3. Through meticulous alignment with experimental data and the derivation of a suitable Hubbard U correction value (6.5), our analysis reveals a refined band structure for pristine CsSnCl3. Critically, our research transcends conventional bandgap understanding, unlocking a profound connection between bandgap modulation and enhanced optoelectronic efficiency. Specifically, our systematic exploration uncovers a noteworthy enhancement in performance for various optoelectronic applications upon doping with V, Ti, Cr, and Mn, substantiating the practicality of our approach. Investigations into mechanical stability reveal that all doped samples exhibit a remarkable ductile nature, rendering them well-suited for thin-film solar cell production and other applications demanding stability and flexibility. By bridging the gap between theory and application, our study empowers researchers and industry professionals with actionable insights for selecting the most suitable doped compositions of CsSnCl3, ushering in an era of highly efficient and environmentally sustainable optoelectronic technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
在水一方应助科研通管家采纳,获得10
刚刚
良辰应助科研通管家采纳,获得10
刚刚
123应助科研通管家采纳,获得20
1秒前
良辰应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得20
1秒前
良辰应助科研通管家采纳,获得10
1秒前
lucky应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
yifanchen应助科研通管家采纳,获得10
1秒前
yifanchen应助科研通管家采纳,获得10
1秒前
良辰应助科研通管家采纳,获得10
1秒前
123应助科研通管家采纳,获得20
1秒前
1秒前
良辰应助科研通管家采纳,获得10
1秒前
2秒前
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
2秒前
慕青应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
Hello应助科研通管家采纳,获得10
2秒前
lzl发布了新的文献求助30
3秒前
3秒前
顺利的耶发布了新的文献求助10
3秒前
4秒前
4秒前
LM完成签到,获得积分10
4秒前
小廖同学完成签到,获得积分20
4秒前
科研通AI2S应助奥特曼采纳,获得10
5秒前
6秒前
Billy应助小天采纳,获得30
6秒前
爱科研完成签到,获得积分20
7秒前
彭凯发布了新的文献求助10
7秒前
小小王发布了新的文献求助10
7秒前
颛颛发布了新的文献求助10
8秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316498
求助须知:如何正确求助?哪些是违规求助? 2948286
关于积分的说明 8539762
捐赠科研通 2624145
什么是DOI,文献DOI怎么找? 1435889
科研通“疑难数据库(出版商)”最低求助积分说明 665703
邀请新用户注册赠送积分活动 651654