Estimating COVID-19 vaccine protection rates via dynamic epidemiological models—a study of 10 countries

2019年冠状病毒病(COVID-19) 大流行 流行病模型 估计 接种疫苗 统计 助推器(火箭) 计量经济学 计算机科学 医学 数学 病毒学 传染病(医学专业) 环境卫生 人口 经济 工程类 疾病 管理 病理 航空航天工程
作者
Yuru Zhu,Jia Gu,Yumou Qiu,Song Xi Chen
出处
期刊:The Annals of Applied Statistics [Institute of Mathematical Statistics]
卷期号:17 (4)
标识
DOI:10.1214/23-aoas1764
摘要

The real-world performance of vaccines against COVID-19 infections is critically important to counter the pandemics. We propose a varying coefficient stochastic epidemic model to estimate the vaccine protection rates based on the publicly available epidemiological and vaccination data. To tackle the challenges posed by the unobserved state variables, we develop a multistep decentralized estimation procedure that uses different data segments to estimate different parameters. A B-spline structure is used to approximate the underlying infection rates and to facilitate model simulation in obtaining an objective function between the imputed and the simulation-based estimates of the latent state variables, leading to simulation-based estimation of the diagnosis rate using data in the prevaccine period and the vaccine effect parameters using data in the postvaccine periods. The time-varying infection, recovery and death rates are estimated by kernel regressions. We apply the proposed method to analyze the data in ten countries which collectively used eight vaccines. The analysis reveals that the average protection rate of the full vaccination was at least 22% higher than that of the partial vaccination and was largely above the WHO recognized level of 50% before November 20, 2021, including the Delta variant dominated period. The protection rates for the booster vaccine in the Omicron period were also provided.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叶子发布了新的文献求助10
刚刚
Owen应助hwezhu采纳,获得10
1秒前
幸运的张发布了新的文献求助10
1秒前
小马甲应助霞霞子采纳,获得10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
打打应助怕孤单的石头采纳,获得10
3秒前
3秒前
叶子完成签到,获得积分20
3秒前
城九寒完成签到,获得积分10
3秒前
勤劳菠萝发布了新的文献求助10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
Sc应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
3秒前
hhah发布了新的文献求助10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
Sc应助科研通管家采纳,获得10
3秒前
3秒前
所所应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
4秒前
所所应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Superabsorbent Polymers 2025 800
Rwandan diaspora online: Social connections and identity narratives 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5805254
求助须知:如何正确求助?哪些是违规求助? 5848462
关于积分的说明 15515697
捐赠科研通 4930591
什么是DOI,文献DOI怎么找? 2654668
邀请新用户注册赠送积分活动 1601464
关于科研通互助平台的介绍 1556460