Kidney Stone Detection from CT Images Using ALEXNET and Hybrid ALEXNET-RF Models

计算机科学 Softmax函数 随机森林 人工智能 肾结石 嵌入 模式识别(心理学) 深度学习 计算机视觉 医学 泌尿科
作者
M. Revathi,G. Raghuraman
出处
期刊:Journal of Circuits, Systems, and Computers [World Scientific]
卷期号:33 (06)
标识
DOI:10.1142/s021812662450107x
摘要

Nowadays, kidney stone disease is one of the most common health issue which needs more attention for early diagnosis. Several imaging modalities are used for the detection of kidney stone. The gold standard CT scans are valuable for kidney stone detection. For kidney stone detection, machine and deep learning-based algorithms are widely used. In order to enhance the performance of earlier techniques, two techniques are developed. Initially, an AlexNet-based model is developed in this work. By using the enhanced recognition capability of Random Forest (RF), we developed a hybrid AlexNet-RF model. Both the models are tested against Kidney Stone Detection dataset. The performance of the proposed model proved that in terms of accuracy and loss the hybrid AlexNet-RF model secured reliable higher detection rate of approximately 97.1% to 97.5%. This showed that embedding RF in the Softmax layer of AlexNet significantly improves the prediction rate of kidney stone.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老刘不吃香菜完成签到,获得积分10
刚刚
1秒前
搜集达人应助网球采纳,获得10
1秒前
zxy完成签到,获得积分10
1秒前
清新的万天完成签到,获得积分10
2秒前
研友_VZG7GZ应助豆沙冰采纳,获得10
2秒前
enternow完成签到 ,获得积分10
3秒前
赘婿应助微笑的鼠标采纳,获得10
3秒前
a1313完成签到,获得积分10
3秒前
3秒前
lyy66964193发布了新的文献求助10
3秒前
华仔应助紧张的寒梦采纳,获得10
5秒前
6秒前
畜牧笑笑完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
尊敬吐司完成签到,获得积分10
7秒前
7秒前
8秒前
gaoyi12356完成签到,获得积分10
8秒前
wanci应助醉熏的飞薇采纳,获得10
8秒前
木木应助可可采纳,获得10
8秒前
烟花应助唠叨的以柳采纳,获得10
8秒前
谨慎初曼给谨慎初曼的求助进行了留言
9秒前
碳14发布了新的文献求助10
9秒前
10秒前
11秒前
xelloss发布了新的文献求助10
12秒前
丰富钢铁侠完成签到,获得积分20
12秒前
12秒前
外向宛菡发布了新的文献求助10
12秒前
12秒前
Phebe发布了新的文献求助10
13秒前
wy.he应助高兴的海亦采纳,获得10
13秒前
研友_Y59785应助高兴的海亦采纳,获得10
13秒前
ZGZ123应助高兴的海亦采纳,获得10
13秒前
13秒前
英姑应助高兴的海亦采纳,获得10
13秒前
13秒前
所所应助高兴的海亦采纳,获得10
13秒前
ED应助高兴的海亦采纳,获得10
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978415
求助须知:如何正确求助?哪些是违规求助? 3522416
关于积分的说明 11213317
捐赠科研通 3259798
什么是DOI,文献DOI怎么找? 1799678
邀请新用户注册赠送积分活动 878563
科研通“疑难数据库(出版商)”最低求助积分说明 806987