Forest digital twin: A new tool for forest management practices based on Spatio-Temporal Data, 3D simulation Engine, and intelligent interactive environment

计算机科学 数字化 森林经营 森林资源清查 数据挖掘 森林结构 随机森林 人工智能 计算机视觉 林业 地理 考古 天蓬
作者
Hanqing Qiu,Huaiqing Zhang,Kexin Lei,Huacong Zhang,Xingtao Hu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:215: 108416-108416 被引量:9
标识
DOI:10.1016/j.compag.2023.108416
摘要

Existing forest digitization studies focus on one-way forest management practice visualization simulation, lacking decision-making feedback and virtual-real interaction synchronization. This paper presents the vision of the forest digital twin paradigm. We construct a forest digital twin to explore a new digital carrier of forest resources using remote sensing data, forest inventory data, the Cesium Digital Earth Engine, forest planning theory and parametric 3D modeling technology. The two-way interaction and thinning experiments showed that the forest digital twin could provide a novel pattern for in-depth analysis of forest spatial structure, individual tree dynamic growth and human-digital twin interaction effects. The successful recognition rate in matching the forest structure seen on real forest structure images with the forest digital scene was 91.3%, indicating that the forest digital twin can characterize the real forest structure significantly. The prediction accuracy of the multi-grade growth model integrating the Bayesian method for DBH, H was more than 90.4%. In addition, ASS-FDT interaction is superior to the assessors (ASS) and forest digital twin (FDT) for stand spatial structure overall optimization. The multi-dimensional stand spatial structure index (F-index) increased by 22.82%. The constructed forest digital twin model shows superior performance in optimizing the stand growth model and enhancing the overall stand spatial structure under the decision-making feedback and real-time interaction strategies. The automatic operation pattern provides a user-friendly forest management practice solution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wwwwrrrrr完成签到,获得积分10
刚刚
刚刚
BPM发布了新的文献求助10
刚刚
多看文献完成签到,获得积分10
刚刚
高冷的小白完成签到 ,获得积分10
刚刚
心向发布了新的文献求助10
1秒前
DJY完成签到,获得积分10
1秒前
1秒前
执着的迎松完成签到,获得积分10
1秒前
xu发布了新的文献求助30
1秒前
1秒前
1秒前
大豹子发布了新的文献求助10
1秒前
1秒前
CodeCraft应助日尧采纳,获得10
1秒前
Zhouxin发布了新的文献求助30
2秒前
慕青应助筷子撬地球采纳,获得30
3秒前
jackdawjo完成签到,获得积分10
3秒前
DH完成签到,获得积分10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
浮游应助科研通管家采纳,获得10
3秒前
Orange应助Kem采纳,获得10
3秒前
chenqiumu应助科研通管家采纳,获得30
3秒前
3秒前
英俊的铭应助科研通管家采纳,获得30
4秒前
量子星尘发布了新的文献求助10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
xixi完成签到 ,获得积分10
4秒前
4秒前
4秒前
4秒前
4秒前
三月完成签到 ,获得积分10
4秒前
寒江雪发布了新的文献求助10
4秒前
奋斗的桐发布了新的文献求助10
4秒前
4秒前
圆滑的铁勺完成签到,获得积分10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5433862
求助须知:如何正确求助?哪些是违规求助? 4546192
关于积分的说明 14201354
捐赠科研通 4466140
什么是DOI,文献DOI怎么找? 2447825
邀请新用户注册赠送积分活动 1438909
关于科研通互助平台的介绍 1415843