Fault identification of rolling bearings under linear varying speed based on the slope features of time–frequency ridges

稳健性(进化) 特征(语言学) 断层(地质) 振动 时频分析 瞬时相位 控制理论(社会学) 工程类 模式识别(心理学) 人工智能 地质学 计算机科学 声学 电信 生物化学 化学 语言学 物理 雷达 控制(管理) 地震学 基因 哲学
作者
Xiaohan Cheng,Yuan Long,Yuxin Lu,Yazhou Wang,Nanqin Ding,Yuandong Gong
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:205: 110834-110834 被引量:1
标识
DOI:10.1016/j.ymssp.2023.110834
摘要

Under the condition of linear varying speed regulation, the vibration signal of the rolling bearing is non-stationary, and its fault frequency is time-varying, which makes it difficult to extract the bearing fault characteristics. In order to better improve the fault identification accuracy of rolling bearing, two slope characteristic indicators of time–frequency ridges (TFRs) based on time–frequency images (TFIs) are proposed, which are called pseudo-slope and pseudo-angle. The intra-class state-aware stability and inter-class state-aware sensitivity of the characteristic indicators are verified by simulation and experiment. At the same time, the robustness of the slope features of TFRs and the Tamura features under the influence of time-varying, noise and image cropping are compared, and it is proved that the stability of the slope features of TFRs are better than that of the Tamura features. In the case of one single-index identification, the fault recognition rate of pseudo-slope and pseudo-angle features is higher than that of Tamura single-index features. On the basis of single-index identification, a new feature fusion by numerical summation of pseudo-slope feature and Tamura contrast feature is proposed, and the fault identification accuracy of the fused feature indicator is 98.61%, which realizes high-precision identification of rolling bearing faults.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助负责从丹采纳,获得10
1秒前
小蘑菇应助1111采纳,获得10
2秒前
2秒前
Crema应助zzzzoa采纳,获得10
3秒前
anjun完成签到,获得积分10
3秒前
leilei发布了新的文献求助10
3秒前
研友_Z14Yln应助Zengxl2017采纳,获得10
5秒前
在水一方应助微微采纳,获得10
6秒前
7秒前
7秒前
7秒前
7秒前
ysca完成签到,获得积分20
8秒前
香蕉觅云应助书羽采纳,获得10
8秒前
8秒前
8秒前
8秒前
10秒前
星星子完成签到,获得积分10
10秒前
CipherSage应助拖拉机采纳,获得10
10秒前
秋天里的水完成签到,获得积分10
10秒前
研友_VZG7GZ应助yujie采纳,获得10
11秒前
11秒前
不安青牛应助zhuyimin913采纳,获得10
11秒前
我是老大应助灵梦柠檬酸采纳,获得10
12秒前
yuanyuan发布了新的文献求助10
12秒前
空青发布了新的文献求助10
13秒前
13秒前
13秒前
ysca发布了新的文献求助10
13秒前
MSG完成签到,获得积分10
14秒前
科目三应助leilei采纳,获得10
15秒前
15秒前
蓝色的纪念完成签到,获得积分10
15秒前
王嘉尔发布了新的文献求助10
15秒前
负责从丹发布了新的文献求助10
17秒前
anjun发布了新的文献求助10
17秒前
高sir发布了新的文献求助10
17秒前
江流有声发布了新的文献求助10
18秒前
19秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455164
求助须知:如何正确求助?哪些是违规求助? 3050441
关于积分的说明 9021374
捐赠科研通 2739114
什么是DOI,文献DOI怎么找? 1502413
科研通“疑难数据库(出版商)”最低求助积分说明 694501
邀请新用户注册赠送积分活动 693293