A lightweight RGB superposition effect adjustment network for low-light image enhancement and denoising

计算机科学 人工智能 RGB颜色模型 计算机视觉 像素 特征(语言学) 图像质量 色彩平衡 彩色图像 噪音(视频) 图像处理 模式识别(心理学) 图像(数学) 哲学 语言学
作者
Peidong Chen,Juan Zhang,Yongbin Gao,Zhijun Fang,Jenq‐Neng Hwang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:127: 107234-107234 被引量:1
标识
DOI:10.1016/j.engappai.2023.107234
摘要

In low-light conditions, under-exposure causes certain kinds of image quality degradations, including intensive noise, biased color and degraded contrast. And during the enhancement process, it is also easy to amplify noise or cause overexposure. To overcome these problems, in this paper, an unsupervised learning approach, which is a lightweight RGB superposition effect adjustment network for low light image enhancement (SEA-Net), is proposed. The detail feature module in the proposed network can predict the appropriate saturation and brightness of the color by adjusting the distance among the R, G and B values of the pixels, and then use image multi-level feature fusion to control the overall contrast of the image. The proposed refining extraction operation algorithm uses Hadamard product to amplify the features of image color information, which can effectively avoid color deviation in the enhanced image. The network removes noise by decomposing the image and reconstructing it. To prevent image overexposure, the network effectively suppresses pixel value overflow and avoid image information loss. Because only low-light images are required for training, the proposed loss functions guide network to generate more realistic images with better saturation and contrast. Despite its light weight, this method shows faster running time and more favorable performance than other competitors. In reality, it can be applied to improve the performance of advanced image tasks under low-light conditions, such as nighttime facial recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
安静幻桃发布了新的文献求助10
刚刚
1秒前
2秒前
一二三亖完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
3秒前
香蕉觅云应助怕黑的冰安采纳,获得10
3秒前
123完成签到,获得积分10
4秒前
bluse033发布了新的文献求助10
4秒前
今后应助小威采纳,获得10
5秒前
5秒前
lalala应助Raphael Zhang采纳,获得10
6秒前
6秒前
6秒前
元谷雪发布了新的文献求助10
6秒前
蓝桉发布了新的文献求助10
7秒前
大力音响发布了新的文献求助10
7秒前
QXR完成签到,获得积分10
7秒前
快乐帽子发布了新的文献求助10
8秒前
Trista0036完成签到 ,获得积分10
8秒前
9秒前
9秒前
怕黑的冰安完成签到,获得积分20
9秒前
李健应助黑叔叔采纳,获得10
9秒前
丫丫丫发布了新的文献求助10
9秒前
9秒前
研友_VZG7GZ应助夏风下采纳,获得10
10秒前
10秒前
10秒前
情怀应助自由的蛋挞采纳,获得10
11秒前
LBJ完成签到,获得积分10
11秒前
尚好佳完成签到,获得积分10
12秒前
不安夜雪发布了新的文献求助10
12秒前
MisTerZhang发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3479168
求助须知:如何正确求助?哪些是违规求助? 3069899
关于积分的说明 9115835
捐赠科研通 2761682
什么是DOI,文献DOI怎么找? 1515415
邀请新用户注册赠送积分活动 700906
科研通“疑难数据库(出版商)”最低求助积分说明 699931