A lightweight RGB superposition effect adjustment network for low-light image enhancement and denoising

计算机科学 人工智能 RGB颜色模型 计算机视觉 像素 特征(语言学) 图像质量 色彩平衡 彩色图像 噪音(视频) 图像处理 模式识别(心理学) 图像(数学) 哲学 语言学
作者
Peidong Chen,Juan Zhang,Yongbin Gao,Zhijun Fang,Jenq‐Neng Hwang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:127: 107234-107234 被引量:4
标识
DOI:10.1016/j.engappai.2023.107234
摘要

In low-light conditions, under-exposure causes certain kinds of image quality degradations, including intensive noise, biased color and degraded contrast. And during the enhancement process, it is also easy to amplify noise or cause overexposure. To overcome these problems, in this paper, an unsupervised learning approach, which is a lightweight RGB superposition effect adjustment network for low light image enhancement (SEA-Net), is proposed. The detail feature module in the proposed network can predict the appropriate saturation and brightness of the color by adjusting the distance among the R, G and B values of the pixels, and then use image multi-level feature fusion to control the overall contrast of the image. The proposed refining extraction operation algorithm uses Hadamard product to amplify the features of image color information, which can effectively avoid color deviation in the enhanced image. The network removes noise by decomposing the image and reconstructing it. To prevent image overexposure, the network effectively suppresses pixel value overflow and avoid image information loss. Because only low-light images are required for training, the proposed loss functions guide network to generate more realistic images with better saturation and contrast. Despite its light weight, this method shows faster running time and more favorable performance than other competitors. In reality, it can be applied to improve the performance of advanced image tasks under low-light conditions, such as nighttime facial recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
正在下雨完成签到 ,获得积分10
2秒前
小文完成签到,获得积分10
3秒前
5秒前
TiYooY发布了新的文献求助10
6秒前
彗星入梦完成签到 ,获得积分10
7秒前
8秒前
王恩惠发布了新的文献求助10
8秒前
yx完成签到,获得积分10
8秒前
研友_VZG7GZ应助王德威采纳,获得10
8秒前
8秒前
小乔同学发布了新的文献求助10
9秒前
哈哈哈完成签到,获得积分10
9秒前
认真平蝶发布了新的文献求助10
9秒前
11秒前
Akim应助Coral.采纳,获得10
12秒前
12秒前
阿可阿可发布了新的文献求助10
13秒前
13秒前
慕青应助yx采纳,获得10
15秒前
TiYooY完成签到,获得积分10
16秒前
xxxzy发布了新的文献求助10
16秒前
江南烟雨如笙完成签到 ,获得积分10
16秒前
赵焱峥完成签到,获得积分10
18秒前
凯文完成签到,获得积分10
18秒前
调皮的思松完成签到,获得积分10
18秒前
felix发布了新的文献求助10
20秒前
21秒前
Shengwj完成签到,获得积分10
22秒前
半枝桃发布了新的文献求助10
23秒前
王恩惠完成签到,获得积分10
23秒前
cnnnn完成签到 ,获得积分10
25秒前
25秒前
路一帆完成签到,获得积分10
25秒前
26秒前
水菜泽子发布了新的文献求助10
26秒前
quhayley应助ccdk2025采纳,获得20
26秒前
27秒前
王德威完成签到,获得积分10
27秒前
banma完成签到,获得积分20
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950968
求助须知:如何正确求助?哪些是违规求助? 3496346
关于积分的说明 11081568
捐赠科研通 3226849
什么是DOI,文献DOI怎么找? 1783983
邀请新用户注册赠送积分活动 868089
科研通“疑难数据库(出版商)”最低求助积分说明 800993