亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A data-driven hybrid approach to generate synthetic data for unavailable damage scenarios in welded rails for ultrasonic guided wave monitoring

计算机科学 超声波传感器 合成数据 自编码 信号(编程语言) 有限元法 结构健康监测 试验数据 导波测试 签名(拓扑) 传感器 人工智能 深度学习 声学 工程类 结构工程 物理 几何学 数学 程序设计语言
作者
Dineo A. Ramatlo,Daniël N. Wilke,Philip W. Loveday
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:23 (3): 1890-1913
标识
DOI:10.1177/14759217231197265
摘要

Developing reliable ultrasonic-guided wave monitoring systems requires a significant amount of inspection data for each application scenario. Experimental investigations are fundamental but require a long period and are costly, especially for real-life testing. This is exacerbated by a lack of experimental data that includes damage. In some guided wave applications, such as pipelines, it is possible to introduce artificial damage and perform lab experiments on the test structure. However, in rail track applications, laboratory experiments are either not possible or meaningful. The generation of synthetic data using modelling capabilities thus becomes increasingly important. This paper presents a variational autoencoder (VAE)-based deep learning approach for generating synthetic ultrasonic inspection data for welded railway tracks. The primary aim is to use a VAE model to generate synthetic data containing damage signatures at specified positions along the length of a rail track. The VAE is trained to encode an input damage-free baseline signal and decode to reconstruct an inspection signal with damage by adding a damage signature on either side of the transducer by specifying the distance to the damage signature as an additional variable in the latent space. The training data was produced from a physics-based model that computes virtual experimental response signals using the semi-analytical finite element and the traditional finite element procedures. The VAE reconstructed response signals containing damage signatures were almost identical to the original target signals simulated using the physics-based model. The VAE was able to capture the complex features in the signals resulting from the interaction of multiple propagating modes in a multi-discontinuous waveguide. The VAE model successfully generated synthetic inspection data by fusing reflections from welds with the reflection from a crack model at specified distances from the transducer on either the right or left side. In some cases, the VAE did not exactly reconstruct the peak amplitude of the reflections. This study demonstrated the potential and highlighted the benefit of using a VAE to generate synthetic data with damage signatures as opposed to using superposition to fuse the damage-free responses containing reflections from welds with a damage signature. The results show that it is possible to generate realistic inspection data for unavailable damage scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
poegtam完成签到,获得积分10
1分钟前
NexusExplorer应助求助的阿靖采纳,获得30
1分钟前
迷茫的一代完成签到,获得积分10
1分钟前
求助的阿靖完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
大方剑愁完成签到 ,获得积分10
3分钟前
大方剑愁发布了新的文献求助10
3分钟前
欣喜怜南完成签到 ,获得积分10
4分钟前
5分钟前
幽默赛君完成签到 ,获得积分10
5分钟前
5分钟前
陈杰发布了新的文献求助10
5分钟前
5分钟前
如意歌曲发布了新的文献求助10
6分钟前
CodeCraft应助陈杰采纳,获得10
6分钟前
顾矜应助科研通管家采纳,获得30
6分钟前
Yau完成签到,获得积分10
7分钟前
7分钟前
陈杰发布了新的文献求助10
7分钟前
pluto应助陈杰采纳,获得10
8分钟前
8分钟前
8分钟前
ZJR发布了新的文献求助10
8分钟前
huyx发布了新的文献求助10
8分钟前
yishan完成签到,获得积分10
8分钟前
GRATE完成签到 ,获得积分10
9分钟前
xiaofeiyan完成签到 ,获得积分10
10分钟前
星辰大海应助科研通管家采纳,获得10
10分钟前
jyy应助科研通管家采纳,获得10
10分钟前
10分钟前
辛勤千筹发布了新的文献求助20
10分钟前
陈杰完成签到,获得积分10
10分钟前
zsmj23完成签到 ,获得积分0
12分钟前
14分钟前
luckyalias完成签到 ,获得积分10
14分钟前
ppapppap发布了新的文献求助10
14分钟前
ppapppap完成签到,获得积分20
14分钟前
wangermazi完成签到,获得积分10
15分钟前
脑洞疼应助Cassel采纳,获得10
15分钟前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3126163
求助须知:如何正确求助?哪些是违规求助? 2776302
关于积分的说明 7729792
捐赠科研通 2431786
什么是DOI,文献DOI怎么找? 1292236
科研通“疑难数据库(出版商)”最低求助积分说明 622664
版权声明 600408