A data-driven hybrid approach to generate synthetic data for unavailable damage scenarios in welded rails for ultrasonic guided wave monitoring

计算机科学 超声波传感器 合成数据 自编码 信号(编程语言) 有限元法 结构健康监测 试验数据 导波测试 签名(拓扑) 传感器 人工智能 深度学习 声学 工程类 结构工程 物理 几何学 数学 程序设计语言
作者
Dineo A. Ramatlo,Daniël N. Wilke,Philip W. Loveday
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:23 (3): 1890-1913
标识
DOI:10.1177/14759217231197265
摘要

Developing reliable ultrasonic-guided wave monitoring systems requires a significant amount of inspection data for each application scenario. Experimental investigations are fundamental but require a long period and are costly, especially for real-life testing. This is exacerbated by a lack of experimental data that includes damage. In some guided wave applications, such as pipelines, it is possible to introduce artificial damage and perform lab experiments on the test structure. However, in rail track applications, laboratory experiments are either not possible or meaningful. The generation of synthetic data using modelling capabilities thus becomes increasingly important. This paper presents a variational autoencoder (VAE)-based deep learning approach for generating synthetic ultrasonic inspection data for welded railway tracks. The primary aim is to use a VAE model to generate synthetic data containing damage signatures at specified positions along the length of a rail track. The VAE is trained to encode an input damage-free baseline signal and decode to reconstruct an inspection signal with damage by adding a damage signature on either side of the transducer by specifying the distance to the damage signature as an additional variable in the latent space. The training data was produced from a physics-based model that computes virtual experimental response signals using the semi-analytical finite element and the traditional finite element procedures. The VAE reconstructed response signals containing damage signatures were almost identical to the original target signals simulated using the physics-based model. The VAE was able to capture the complex features in the signals resulting from the interaction of multiple propagating modes in a multi-discontinuous waveguide. The VAE model successfully generated synthetic inspection data by fusing reflections from welds with the reflection from a crack model at specified distances from the transducer on either the right or left side. In some cases, the VAE did not exactly reconstruct the peak amplitude of the reflections. This study demonstrated the potential and highlighted the benefit of using a VAE to generate synthetic data with damage signatures as opposed to using superposition to fuse the damage-free responses containing reflections from welds with a damage signature. The results show that it is possible to generate realistic inspection data for unavailable damage scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
尹天扬完成签到,获得积分10
1秒前
1秒前
大方大船完成签到,获得积分10
2秒前
Sigyn完成签到,获得积分10
2秒前
顺利琦发布了新的文献求助10
2秒前
2秒前
自由完成签到,获得积分20
3秒前
Volta_zz完成签到,获得积分10
3秒前
3秒前
欣欣子完成签到,获得积分10
4秒前
5秒前
111完成签到 ,获得积分10
5秒前
5秒前
柔弱煎饼发布了新的文献求助30
6秒前
6秒前
曹梦梦完成签到,获得积分10
6秒前
6秒前
风趣霆完成签到,获得积分10
7秒前
7秒前
7秒前
小二郎应助Sigyn采纳,获得10
7秒前
科研通AI5应助不对也没错采纳,获得10
7秒前
lyn完成签到,获得积分20
7秒前
8秒前
隐形觅翠完成签到,获得积分10
8秒前
刘鹏宇发布了新的文献求助10
8秒前
lizh187完成签到 ,获得积分10
8秒前
北城完成签到,获得积分10
8秒前
自由发布了新的文献求助10
9秒前
9秒前
小豆芽儿发布了新的文献求助10
9秒前
WNL发布了新的文献求助10
10秒前
Ngu完成签到,获得积分10
10秒前
科研通AI5应助冷艳后妈采纳,获得10
10秒前
陶1122发布了新的文献求助10
10秒前
万能图书馆应助乐观期待采纳,获得30
10秒前
krystal完成签到,获得积分10
10秒前
学术大小拿完成签到,获得积分10
11秒前
迪迦完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678