A data-driven hybrid approach to generate synthetic data for unavailable damage scenarios in welded rails for ultrasonic guided wave monitoring

计算机科学 超声波传感器 合成数据 自编码 信号(编程语言) 有限元法 结构健康监测 试验数据 导波测试 签名(拓扑) 传感器 人工智能 深度学习 声学 工程类 结构工程 物理 几何学 数学 程序设计语言
作者
Dineo A. Ramatlo,Daniël N. Wilke,Philip W. Loveday
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:23 (3): 1890-1913 被引量:1
标识
DOI:10.1177/14759217231197265
摘要

Developing reliable ultrasonic-guided wave monitoring systems requires a significant amount of inspection data for each application scenario. Experimental investigations are fundamental but require a long period and are costly, especially for real-life testing. This is exacerbated by a lack of experimental data that includes damage. In some guided wave applications, such as pipelines, it is possible to introduce artificial damage and perform lab experiments on the test structure. However, in rail track applications, laboratory experiments are either not possible or meaningful. The generation of synthetic data using modelling capabilities thus becomes increasingly important. This paper presents a variational autoencoder (VAE)-based deep learning approach for generating synthetic ultrasonic inspection data for welded railway tracks. The primary aim is to use a VAE model to generate synthetic data containing damage signatures at specified positions along the length of a rail track. The VAE is trained to encode an input damage-free baseline signal and decode to reconstruct an inspection signal with damage by adding a damage signature on either side of the transducer by specifying the distance to the damage signature as an additional variable in the latent space. The training data was produced from a physics-based model that computes virtual experimental response signals using the semi-analytical finite element and the traditional finite element procedures. The VAE reconstructed response signals containing damage signatures were almost identical to the original target signals simulated using the physics-based model. The VAE was able to capture the complex features in the signals resulting from the interaction of multiple propagating modes in a multi-discontinuous waveguide. The VAE model successfully generated synthetic inspection data by fusing reflections from welds with the reflection from a crack model at specified distances from the transducer on either the right or left side. In some cases, the VAE did not exactly reconstruct the peak amplitude of the reflections. This study demonstrated the potential and highlighted the benefit of using a VAE to generate synthetic data with damage signatures as opposed to using superposition to fuse the damage-free responses containing reflections from welds with a damage signature. The results show that it is possible to generate realistic inspection data for unavailable damage scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zph14204发布了新的文献求助10
刚刚
wanci应助fyn采纳,获得10
刚刚
思源应助godblessyou采纳,获得10
刚刚
刚刚
1秒前
1秒前
1秒前
呆萌如容完成签到 ,获得积分10
2秒前
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
冷艳招牌应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得80
4秒前
Hello应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
lily336699发布了新的文献求助30
6秒前
hute完成签到 ,获得积分10
6秒前
6秒前
稳重一寡发布了新的文献求助10
6秒前
Scrow完成签到 ,获得积分10
7秒前
7秒前
帅气鹭洋发布了新的文献求助10
8秒前
9秒前
汉堡包应助john163采纳,获得10
9秒前
ww发布了新的文献求助10
10秒前
10秒前
11秒前
傲娇的觅翠完成签到,获得积分10
12秒前
赵赵a完成签到,获得积分10
13秒前
彭于晏应助稳重一寡采纳,获得20
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4883732
求助须知:如何正确求助?哪些是违规求助? 4169161
关于积分的说明 12936110
捐赠科研通 3929503
什么是DOI,文献DOI怎么找? 2156155
邀请新用户注册赠送积分活动 1174556
关于科研通互助平台的介绍 1079303