A data-driven hybrid approach to generate synthetic data for unavailable damage scenarios in welded rails for ultrasonic guided wave monitoring

计算机科学 超声波传感器 合成数据 自编码 信号(编程语言) 有限元法 结构健康监测 试验数据 导波测试 签名(拓扑) 传感器 人工智能 深度学习 声学 工程类 结构工程 物理 数学 程序设计语言 几何学
作者
Dineo A. Ramatlo,Daniël N. Wilke,Philip W. Loveday
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:23 (3): 1890-1913 被引量:1
标识
DOI:10.1177/14759217231197265
摘要

Developing reliable ultrasonic-guided wave monitoring systems requires a significant amount of inspection data for each application scenario. Experimental investigations are fundamental but require a long period and are costly, especially for real-life testing. This is exacerbated by a lack of experimental data that includes damage. In some guided wave applications, such as pipelines, it is possible to introduce artificial damage and perform lab experiments on the test structure. However, in rail track applications, laboratory experiments are either not possible or meaningful. The generation of synthetic data using modelling capabilities thus becomes increasingly important. This paper presents a variational autoencoder (VAE)-based deep learning approach for generating synthetic ultrasonic inspection data for welded railway tracks. The primary aim is to use a VAE model to generate synthetic data containing damage signatures at specified positions along the length of a rail track. The VAE is trained to encode an input damage-free baseline signal and decode to reconstruct an inspection signal with damage by adding a damage signature on either side of the transducer by specifying the distance to the damage signature as an additional variable in the latent space. The training data was produced from a physics-based model that computes virtual experimental response signals using the semi-analytical finite element and the traditional finite element procedures. The VAE reconstructed response signals containing damage signatures were almost identical to the original target signals simulated using the physics-based model. The VAE was able to capture the complex features in the signals resulting from the interaction of multiple propagating modes in a multi-discontinuous waveguide. The VAE model successfully generated synthetic inspection data by fusing reflections from welds with the reflection from a crack model at specified distances from the transducer on either the right or left side. In some cases, the VAE did not exactly reconstruct the peak amplitude of the reflections. This study demonstrated the potential and highlighted the benefit of using a VAE to generate synthetic data with damage signatures as opposed to using superposition to fuse the damage-free responses containing reflections from welds with a damage signature. The results show that it is possible to generate realistic inspection data for unavailable damage scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
称心采枫完成签到 ,获得积分0
刚刚
hkh发布了新的文献求助10
刚刚
刚刚
刚刚
lmj717完成签到,获得积分10
刚刚
夏天呀完成签到,获得积分10
1秒前
想喝冰美完成签到,获得积分10
1秒前
谁在说话发布了新的文献求助20
1秒前
langbuyu完成签到,获得积分10
1秒前
1秒前
lin完成签到,获得积分10
2秒前
二哈发布了新的文献求助10
2秒前
古卡可可完成签到,获得积分10
2秒前
doin发布了新的文献求助10
3秒前
杀殿完成签到 ,获得积分10
3秒前
believe完成签到,获得积分10
4秒前
路路完成签到,获得积分10
4秒前
lan完成签到,获得积分10
4秒前
Ava应助小超人采纳,获得10
4秒前
ning发布了新的文献求助10
5秒前
Hightowerliu18完成签到,获得积分0
5秒前
PPP完成签到,获得积分10
5秒前
Sun发布了新的文献求助10
6秒前
Carrie完成签到,获得积分10
6秒前
何晨光下凡完成签到,获得积分10
6秒前
nature完成签到 ,获得积分10
6秒前
lgold完成签到,获得积分10
6秒前
英姑应助cqy采纳,获得10
7秒前
科研_小白应助耍酷的梦桃采纳,获得50
7秒前
甜美三娘完成签到,获得积分10
7秒前
声声慢3完成签到,获得积分10
7秒前
爱哭的小女孩完成签到,获得积分10
8秒前
Liu完成签到 ,获得积分10
8秒前
刘可以完成签到,获得积分10
9秒前
yy完成签到,获得积分10
9秒前
hkh发布了新的文献求助10
9秒前
庄冬丽完成签到,获得积分10
10秒前
优雅的沛春完成签到 ,获得积分10
10秒前
10秒前
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016068
求助须知:如何正确求助?哪些是违规求助? 3556043
关于积分的说明 11319836
捐赠科研通 3289063
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812044