亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A chirplet transform-based mode retrieval method for multicomponent signals with crossover instantaneous frequencies

啁啾声 算法 滤波器(信号处理) 计算机科学 渡线 信号(编程语言) 瞬时相位 组分(热力学) 信号处理 时频分析 频域 匹配滤波器 数学 模式识别(心理学) 希尔伯特谱分析 傅里叶变换 希尔伯特变换 Gabor变换 人工智能 计算机视觉 电信 光学 物理 雷达 热力学 程序设计语言 激光器
作者
Lin Li,Ningning Han,Qingtang Jiang,Charles K. Chui
出处
期刊:Digital Signal Processing [Elsevier]
卷期号:120: 103262-103262 被引量:8
标识
DOI:10.1016/j.dsp.2021.103262
摘要

In nature and engineering world, the acquired signals are usually affected by multiple complicated factors and appear as multicomponent nonstationary modes. In such and many other situations, it is necessary to separate these signals into a finite number of monocomponents to represent the intrinsic modes and underlying dynamics implicated in the source signals. In this paper, we consider the mode retrieval of a multicomponent signal which has crossing instantaneous frequencies (IFs), meaning that some of the components of the signal overlap in the time-frequency domain. We use the chirplet transform (CT) to represent a multicomponent signal in the three-dimensional space of time, frequency and chirp rate and introduce a CT-based signal separation scheme (CT3S) to retrieve modes. In addition, we analyze the error bounds for IF estimation and component recovery with this scheme. We also propose a matched-filter along certain specific time-frequency lines with respect to the chirp rate to make nonstationary signals be further separated and more concentrated in the three-dimensional space of CT. Furthermore, based on the approximation of source signals with linear chirps at any local time, we propose an innovative signal reconstruction algorithm, called the group filter-matched CT3S (GFCT3S), which also takes a group of components into consideration simultaneously. GFCT3S is suitable for signals with crossing IFs. It also decreases component recovery errors when the IFs curves of different components are not crossover, but fast-varying and close to each other. Numerical experiments on synthetic and real signals show our method is more accurate and consistent in signal separation than the empirical mode decomposition, synchrosqueezing transform, and other approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
海鸥别叫了完成签到 ,获得积分10
6秒前
菜菜蔡儿完成签到 ,获得积分10
8秒前
撕佳发布了新的文献求助10
8秒前
9秒前
LALA发布了新的文献求助10
15秒前
15秒前
小y要读书完成签到,获得积分10
17秒前
BowieHuang应助科研通管家采纳,获得10
18秒前
充电宝应助科研通管家采纳,获得10
18秒前
Tanya47应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
18秒前
长情谷南发布了新的文献求助10
19秒前
Criminology34举报Einsamerxx求助涉嫌违规
19秒前
23秒前
潇淼完成签到 ,获得积分10
25秒前
习惯过了头完成签到 ,获得积分10
26秒前
简柠完成签到,获得积分10
26秒前
fangdonghai发布了新的文献求助10
27秒前
Sc完成签到 ,获得积分10
31秒前
wwdd完成签到,获得积分10
31秒前
Hello应助嘎哈采纳,获得10
32秒前
缥缈夏彤完成签到,获得积分10
39秒前
烂漫凡双发布了新的文献求助30
39秒前
Dliii完成签到 ,获得积分10
40秒前
41秒前
年年有余完成签到,获得积分10
43秒前
张天泽完成签到,获得积分10
44秒前
46秒前
46秒前
LALA完成签到,获得积分10
51秒前
无题完成签到,获得积分10
53秒前
1分钟前
jinsijia发布了新的文献求助10
1分钟前
丘比特应助fangdonghai采纳,获得10
1分钟前
1分钟前
1分钟前
尚秋月完成签到,获得积分10
1分钟前
LEETHEO完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664012
求助须知:如何正确求助?哪些是违规求助? 4856247
关于积分的说明 15106917
捐赠科研通 4822415
什么是DOI,文献DOI怎么找? 2581446
邀请新用户注册赠送积分活动 1535597
关于科研通互助平台的介绍 1493881