A chirplet transform-based mode retrieval method for multicomponent signals with crossover instantaneous frequencies

啁啾声 算法 滤波器(信号处理) 计算机科学 渡线 信号(编程语言) 瞬时相位 组分(热力学) 信号处理 时频分析 频域 匹配滤波器 数学 模式识别(心理学) 希尔伯特谱分析 傅里叶变换 希尔伯特变换 Gabor变换 人工智能 计算机视觉 电信 光学 物理 雷达 热力学 程序设计语言 激光器
作者
Lin Li,Ningning Han,Qingtang Jiang,Charles K. Chui
出处
期刊:Digital Signal Processing [Elsevier]
卷期号:120: 103262-103262 被引量:8
标识
DOI:10.1016/j.dsp.2021.103262
摘要

In nature and engineering world, the acquired signals are usually affected by multiple complicated factors and appear as multicomponent nonstationary modes. In such and many other situations, it is necessary to separate these signals into a finite number of monocomponents to represent the intrinsic modes and underlying dynamics implicated in the source signals. In this paper, we consider the mode retrieval of a multicomponent signal which has crossing instantaneous frequencies (IFs), meaning that some of the components of the signal overlap in the time-frequency domain. We use the chirplet transform (CT) to represent a multicomponent signal in the three-dimensional space of time, frequency and chirp rate and introduce a CT-based signal separation scheme (CT3S) to retrieve modes. In addition, we analyze the error bounds for IF estimation and component recovery with this scheme. We also propose a matched-filter along certain specific time-frequency lines with respect to the chirp rate to make nonstationary signals be further separated and more concentrated in the three-dimensional space of CT. Furthermore, based on the approximation of source signals with linear chirps at any local time, we propose an innovative signal reconstruction algorithm, called the group filter-matched CT3S (GFCT3S), which also takes a group of components into consideration simultaneously. GFCT3S is suitable for signals with crossing IFs. It also decreases component recovery errors when the IFs curves of different components are not crossover, but fast-varying and close to each other. Numerical experiments on synthetic and real signals show our method is more accurate and consistent in signal separation than the empirical mode decomposition, synchrosqueezing transform, and other approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助春风不语采纳,获得10
1秒前
米诺发布了新的文献求助10
2秒前
在水一方应助XingZiBa采纳,获得10
2秒前
2秒前
yeah发布了新的文献求助30
3秒前
苏silence发布了新的文献求助10
4秒前
LX完成签到,获得积分10
4秒前
Luuu发布了新的文献求助10
5秒前
5秒前
6秒前
7秒前
威武的小熊猫完成签到,获得积分10
8秒前
壮观若南完成签到,获得积分10
8秒前
耶的猫发布了新的文献求助10
9秒前
平方发布了新的文献求助10
10秒前
10秒前
米诺完成签到,获得积分10
11秒前
11秒前
雷马完成签到,获得积分10
11秒前
小蘑菇应助7ohnny采纳,获得10
12秒前
14秒前
zyz完成签到,获得积分10
14秒前
蓝莓妮儿发布了新的文献求助10
15秒前
NexusExplorer应助梦醒采纳,获得10
15秒前
glzhou1975发布了新的文献求助10
16秒前
16秒前
充电宝应助飘逸问晴采纳,获得10
19秒前
量子星尘发布了新的文献求助10
19秒前
SciGPT应助逆夏采纳,获得10
19秒前
20秒前
21秒前
陈惠卿88发布了新的文献求助10
21秒前
123456发布了新的文献求助20
22秒前
23秒前
lixm发布了新的文献求助10
23秒前
ZZC10完成签到,获得积分10
25秒前
25秒前
7ohnny发布了新的文献求助10
26秒前
26秒前
张靖雯完成签到,获得积分20
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5571900
求助须知:如何正确求助?哪些是违规求助? 4657057
关于积分的说明 14719219
捐赠科研通 4597883
什么是DOI,文献DOI怎么找? 2523461
邀请新用户注册赠送积分活动 1494260
关于科研通互助平台的介绍 1464374