A chirplet transform-based mode retrieval method for multicomponent signals with crossover instantaneous frequencies

啁啾声 算法 滤波器(信号处理) 计算机科学 渡线 信号(编程语言) 瞬时相位 组分(热力学) 信号处理 时频分析 频域 匹配滤波器 数学 模式识别(心理学) 希尔伯特谱分析 傅里叶变换 希尔伯特变换 Gabor变换 人工智能 计算机视觉 电信 光学 物理 雷达 热力学 程序设计语言 激光器
作者
Lin Li,Ningning Han,Qingtang Jiang,Charles K. Chui
出处
期刊:Digital Signal Processing [Elsevier BV]
卷期号:120: 103262-103262 被引量:8
标识
DOI:10.1016/j.dsp.2021.103262
摘要

In nature and engineering world, the acquired signals are usually affected by multiple complicated factors and appear as multicomponent nonstationary modes. In such and many other situations, it is necessary to separate these signals into a finite number of monocomponents to represent the intrinsic modes and underlying dynamics implicated in the source signals. In this paper, we consider the mode retrieval of a multicomponent signal which has crossing instantaneous frequencies (IFs), meaning that some of the components of the signal overlap in the time-frequency domain. We use the chirplet transform (CT) to represent a multicomponent signal in the three-dimensional space of time, frequency and chirp rate and introduce a CT-based signal separation scheme (CT3S) to retrieve modes. In addition, we analyze the error bounds for IF estimation and component recovery with this scheme. We also propose a matched-filter along certain specific time-frequency lines with respect to the chirp rate to make nonstationary signals be further separated and more concentrated in the three-dimensional space of CT. Furthermore, based on the approximation of source signals with linear chirps at any local time, we propose an innovative signal reconstruction algorithm, called the group filter-matched CT3S (GFCT3S), which also takes a group of components into consideration simultaneously. GFCT3S is suitable for signals with crossing IFs. It also decreases component recovery errors when the IFs curves of different components are not crossover, but fast-varying and close to each other. Numerical experiments on synthetic and real signals show our method is more accurate and consistent in signal separation than the empirical mode decomposition, synchrosqueezing transform, and other approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万叶发布了新的文献求助10
2秒前
haofan17完成签到,获得积分0
2秒前
YY发布了新的文献求助30
2秒前
Shaynin完成签到,获得积分10
3秒前
充电宝应助fanli采纳,获得10
3秒前
XXXX完成签到,获得积分10
4秒前
发顶刊完成签到,获得积分10
4秒前
小二郎应助少年弦采纳,获得10
4秒前
weiyu发布了新的文献求助10
5秒前
wangbq完成签到 ,获得积分10
5秒前
6秒前
Swim完成签到,获得积分20
7秒前
丘比特应助邵晓啸采纳,获得20
9秒前
科研通AI2S应助发顶刊采纳,获得10
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
好运来应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
彭于晏应助科研通管家采纳,获得10
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
星辰大海应助科研通管家采纳,获得10
10秒前
大模型应助科研通管家采纳,获得10
10秒前
ding应助科研通管家采纳,获得10
10秒前
知许解夏应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
李爱国应助科研通管家采纳,获得30
11秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
慕青应助科研通管家采纳,获得10
11秒前
11秒前
lee发布了新的文献求助10
12秒前
leodu完成签到,获得积分10
14秒前
14秒前
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966370
求助须知:如何正确求助?哪些是违规求助? 3511789
关于积分的说明 11159900
捐赠科研通 3246400
什么是DOI,文献DOI怎么找? 1793416
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388