A chirplet transform-based mode retrieval method for multicomponent signals with crossover instantaneous frequencies

啁啾声 算法 滤波器(信号处理) 计算机科学 渡线 信号(编程语言) 瞬时相位 组分(热力学) 信号处理 时频分析 频域 匹配滤波器 数学 模式识别(心理学) 希尔伯特谱分析 傅里叶变换 希尔伯特变换 Gabor变换 人工智能 计算机视觉 电信 光学 物理 雷达 热力学 程序设计语言 激光器
作者
Lin Li,Ningning Han,Qingtang Jiang,Charles K. Chui
出处
期刊:Digital Signal Processing [Elsevier]
卷期号:120: 103262-103262 被引量:8
标识
DOI:10.1016/j.dsp.2021.103262
摘要

In nature and engineering world, the acquired signals are usually affected by multiple complicated factors and appear as multicomponent nonstationary modes. In such and many other situations, it is necessary to separate these signals into a finite number of monocomponents to represent the intrinsic modes and underlying dynamics implicated in the source signals. In this paper, we consider the mode retrieval of a multicomponent signal which has crossing instantaneous frequencies (IFs), meaning that some of the components of the signal overlap in the time-frequency domain. We use the chirplet transform (CT) to represent a multicomponent signal in the three-dimensional space of time, frequency and chirp rate and introduce a CT-based signal separation scheme (CT3S) to retrieve modes. In addition, we analyze the error bounds for IF estimation and component recovery with this scheme. We also propose a matched-filter along certain specific time-frequency lines with respect to the chirp rate to make nonstationary signals be further separated and more concentrated in the three-dimensional space of CT. Furthermore, based on the approximation of source signals with linear chirps at any local time, we propose an innovative signal reconstruction algorithm, called the group filter-matched CT3S (GFCT3S), which also takes a group of components into consideration simultaneously. GFCT3S is suitable for signals with crossing IFs. It also decreases component recovery errors when the IFs curves of different components are not crossover, but fast-varying and close to each other. Numerical experiments on synthetic and real signals show our method is more accurate and consistent in signal separation than the empirical mode decomposition, synchrosqueezing transform, and other approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
K先生完成签到,获得积分10
1秒前
zyy完成签到,获得积分20
1秒前
明理的蜗牛完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
bkagyin应助Lareina采纳,获得10
3秒前
ZWQ完成签到,获得积分10
4秒前
4秒前
Leslie完成签到,获得积分10
5秒前
王槿完成签到,获得积分20
6秒前
7秒前
7秒前
宝剑葫芦完成签到,获得积分10
7秒前
可靠小懒虫完成签到,获得积分10
8秒前
王平宇发布了新的文献求助10
8秒前
无极微光应助舒适的半芹采纳,获得20
8秒前
爆米花应助幽默身影采纳,获得10
8秒前
顾矜应助oOL采纳,获得10
8秒前
大模型应助义气的巨人采纳,获得10
9秒前
10秒前
10秒前
11秒前
orixero应助王平宇采纳,获得30
12秒前
桐桐应助松子采纳,获得10
13秒前
火星上含芙完成签到 ,获得积分10
13秒前
ZhuJY完成签到,获得积分10
14秒前
moumou123发布了新的文献求助10
14秒前
14秒前
义气的菲鹰完成签到,获得积分10
14秒前
bkagyin应助怕孤独的语兰采纳,获得10
16秒前
李健的小迷弟应助1235采纳,获得10
16秒前
Ling发布了新的文献求助30
16秒前
16秒前
17秒前
科研通AI6应助JeanetteJin采纳,获得30
17秒前
17秒前
18秒前
晅007完成签到,获得积分10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480496
求助须知:如何正确求助?哪些是违规求助? 4581690
关于积分的说明 14381729
捐赠科研通 4510321
什么是DOI,文献DOI怎么找? 2471702
邀请新用户注册赠送积分活动 1458148
关于科研通互助平台的介绍 1431837