A chirplet transform-based mode retrieval method for multicomponent signals with crossover instantaneous frequencies

啁啾声 算法 滤波器(信号处理) 计算机科学 渡线 信号(编程语言) 瞬时相位 组分(热力学) 信号处理 时频分析 频域 匹配滤波器 数学 模式识别(心理学) 希尔伯特谱分析 傅里叶变换 希尔伯特变换 Gabor变换 人工智能 计算机视觉 电信 光学 物理 雷达 热力学 程序设计语言 激光器
作者
Lin Li,Ningning Han,Qingtang Jiang,Charles K. Chui
出处
期刊:Digital Signal Processing [Elsevier]
卷期号:120: 103262-103262 被引量:8
标识
DOI:10.1016/j.dsp.2021.103262
摘要

In nature and engineering world, the acquired signals are usually affected by multiple complicated factors and appear as multicomponent nonstationary modes. In such and many other situations, it is necessary to separate these signals into a finite number of monocomponents to represent the intrinsic modes and underlying dynamics implicated in the source signals. In this paper, we consider the mode retrieval of a multicomponent signal which has crossing instantaneous frequencies (IFs), meaning that some of the components of the signal overlap in the time-frequency domain. We use the chirplet transform (CT) to represent a multicomponent signal in the three-dimensional space of time, frequency and chirp rate and introduce a CT-based signal separation scheme (CT3S) to retrieve modes. In addition, we analyze the error bounds for IF estimation and component recovery with this scheme. We also propose a matched-filter along certain specific time-frequency lines with respect to the chirp rate to make nonstationary signals be further separated and more concentrated in the three-dimensional space of CT. Furthermore, based on the approximation of source signals with linear chirps at any local time, we propose an innovative signal reconstruction algorithm, called the group filter-matched CT3S (GFCT3S), which also takes a group of components into consideration simultaneously. GFCT3S is suitable for signals with crossing IFs. It also decreases component recovery errors when the IFs curves of different components are not crossover, but fast-varying and close to each other. Numerical experiments on synthetic and real signals show our method is more accurate and consistent in signal separation than the empirical mode decomposition, synchrosqueezing transform, and other approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秦罗敷应助Daodao采纳,获得10
2秒前
崔崔发布了新的文献求助10
4秒前
5秒前
keyan123完成签到,获得积分10
5秒前
6秒前
9秒前
困困包发布了新的文献求助30
11秒前
冷艳的靳发布了新的文献求助10
12秒前
然12138发布了新的文献求助10
12秒前
13秒前
14秒前
天份z发布了新的文献求助10
15秒前
浮游应助开心采纳,获得10
19秒前
大芳儿发布了新的文献求助10
20秒前
Xjx6519发布了新的文献求助10
20秒前
浮游应助明亮紫易采纳,获得10
20秒前
22秒前
Tcell完成签到,获得积分10
27秒前
胡图图发布了新的文献求助10
27秒前
无极微光应助科研通管家采纳,获得20
28秒前
pluto应助科研通管家采纳,获得10
28秒前
科研通AI6应助科研通管家采纳,获得10
28秒前
shhoing应助科研通管家采纳,获得10
28秒前
李爱国应助科研通管家采纳,获得10
28秒前
乐乐应助科研通管家采纳,获得10
28秒前
JamesPei应助科研通管家采纳,获得10
28秒前
28秒前
玄风应助科研通管家采纳,获得10
28秒前
BowieHuang应助科研通管家采纳,获得10
28秒前
SciGPT应助科研通管家采纳,获得10
28秒前
张宇豪应助科研通管家采纳,获得10
28秒前
科研通AI6应助科研通管家采纳,获得10
29秒前
大模型应助科研通管家采纳,获得10
29秒前
田様应助科研通管家采纳,获得10
29秒前
玄风应助科研通管家采纳,获得10
29秒前
Verity应助科研通管家采纳,获得10
29秒前
厚朴应助开心采纳,获得10
30秒前
大龙哥886应助Xjx6519采纳,获得10
33秒前
在水一方应助zgsjymysmyy采纳,获得30
33秒前
echo发布了新的文献求助10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557785
求助须知:如何正确求助?哪些是违规求助? 4642836
关于积分的说明 14669258
捐赠科研通 4584253
什么是DOI,文献DOI怎么找? 2514716
邀请新用户注册赠送积分活动 1488897
关于科研通互助平台的介绍 1459566