运动表象
心理意象
脑电图
心理学
物理医学与康复
作者
Tingting Wang,Shengzhi Du,Enzeng Dong
标识
DOI:10.1007/s11517-021-02449-0
摘要
To reduce the motor imagery brain-computer interface (MI-BCI) illiteracy phenomenon and improve the classification accuracy, this paper proposed a novel method combining paradigm selection and Riemann distance classification. Firstly, a novel sensitivity-based paradigm selection (SPS) algorithm is designed for the optimization of classification to find the best classification pattern through a sensitive indicator. Then, a generalized Riemann minimum distance mean (GRMDM) classifier is proposed by introducing a weight factor to fuse the Log-Euclidean Metric classifier and the Riemannian Stein divergence classifier. The experimental results show that the proposed method achieves a better performance for multi-class motor imagery tasks. The average classification accuracy on the BCI competition IV dataset2a is 80.98%, which is 11.04% higher than Stein divergence classifier on the original two-class paradigm. Furthermore, the proposed method demonstrates its capacity on reducing MI-BCI illiteracy. Graphical abstract Here we investigate whether the BCI illiteracy phenomenon can be reduced through sensitivity-based paradigm selection (SPS) method and generalized Riemann minimum distance mean (GRMDM) classifier when performing motor imagery tasks.
科研通智能强力驱动
Strongly Powered by AbleSci AI