沸石
催化作用
ZSM-5型
烯烃纤维
双功能
芳构化
无机化学
热液循环
镍
路易斯酸
水热合成
化学
金属
锌
材料科学
化学工程
有机化学
工程类
作者
Tao Pan,Sida Ge,Mengnan Yu,Yana Ju,Ran Zhang,Pei Wu,Kuanyu Zhou,Wu Zhi
出处
期刊:Fuel
[Elsevier]
日期:2021-11-30
卷期号:311: 122629-122629
被引量:21
标识
DOI:10.1016/j.fuel.2021.122629
摘要
Zn modified ZSM-5 zeolite supported Ni bifunctional catalysts were prepared by in-situ hydrothermal synthesis (Zn-Ni-ZSM-5), co-impregnation method (Zn-Ni/ZSM-5) as well as combining in-situ hydrothermal synthesis of Zn-ZSM-5 and sequential impregnation of Ni (Ni/Zn-ZSM-5) and used for the selective converting olefin to aromatics applicable for FCC gasoline hydro-upgrading. The Lewis (L) acid sites generated by ZnOH+ species and hydrogenation active sites from Ni0 species were varied with preparation method, in which their locations at the external surface or micropores of zeolite changed the acid properties of catalysts. Comparing to the Zn-Ni/ZSM-5 from the co-impregnation method, direct in-situ hydrothermal method could incorporate Zn and Ni species within zeolite, which makes the strong interaction between the metal species and the framework Al to form medium-strong L acids (ZnOH+/NiOH+). This leads to the decrease of ratio of Brønsted acid sites to L acid sites (B/L) from 0.40 to 0.12 and the difficulty in reducing of Ni cations to Ni0 from 57% to 30% Ni0 percent. Ni/Zn-ZSM-5 sample prepared by incorporating Zn species into micropores and sequential depositing Ni species at the external surface of zeolite possesses a low B/L ratio similar to Zn-Ni-ZSM-5 (0.20 versus 0.12) but a much higher Ni0 percent (52% versus 30%). Zn-Ni-ZSM-5 shows closer intimacy between Zn and Ni species comparing to Zn-Ni/ZSM-5 and Ni/Zn-ZSM-5. For the 1-hexene aromatization, the formed iso-alkene at acid sites was quickly saturated to iso-alkanes by the adjacent Ni0 particles over Ni-Zn-ZSM-5 catalyst in hydrogen steam. However, the location of aromatization active sites (ZnOH+, L acid sites) in micropores and hydrogenation active sites (Ni0 species) on external surface of Ni/Zn-ZSM-5 makes the tandem conversion of n-alkene → iso-alkene → aromatics, rather than the n-alkene → iso-alkene → iso-alkane. Thus, Zn-Ni-ZSM-5 with close intimacy of ZnOH+ and Ni0 particles shows a high iso-alkane selectivity (27.9% iC4+), while Ni/Zn-ZSM-5 exhibits a high aromatics selectivity (39.6 %) in the conversion of 1-hexene in hydrogen steam. Similar results have also found in the conversion of n-heptane. Here, the control of the intimacy of Zn and Ni in ZSM-5 zeolites has been realized to be a good protocol to adjust the selective conversion of olefins/alkanes to aromatics versus iso-alkanes.
科研通智能强力驱动
Strongly Powered by AbleSci AI