Review on deep learning applications in frequency analysis and control of modern power system

电力系统 适应性 计算机科学 可观测性 自动频率控制 理论(学习稳定性) 自动发电控制 控制工程 人工智能 工程类 功率(物理) 机器学习 电信 数学 量子力学 生物 应用数学 物理 生态学
作者
Yi Zhang,Xiaohan Shi,Hengxu Zhang,Yongji Cao,Vladimir Terzija
出处
期刊:International Journal of Electrical Power & Energy Systems [Elsevier]
卷期号:136: 107744-107744 被引量:184
标识
DOI:10.1016/j.ijepes.2021.107744
摘要

The penetration of renewable energy resources (RES) generation and the interconnection of regional power grids in wide area and large scale have led the modern power system to exhibit more and more complex dynamic features, such as time-varying nonlinearity, uncertainty, data diversity, and local observability. The increasing complexity of power system’s dynamic characteristics makes the traditional analysis and control methods inefficient, even invalid. As a new technology path of Machine Learning, Deep learning (DL) has distinct advantages in solving complex problems such as power system frequency analysis and control due to its powerful ability of data analysis, prediction, and classification. This paper reviews the history, state of art and the future of the DL’s application in power system frequency analysis and control. Firstly, the basic principle and research progress of DL, the training methods, typical structures, and application peculiarity of DL were introduced. Secondly, the application status of DL in frequency situation awareness, frequency security and stability assessment, and frequency regulation and control were summarized, and the adaptability of DL application to each kind of issue was discussed. Finally, the development trend of DL and its application in power system frequency were prospected.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糊涂的勒完成签到,获得积分10
2秒前
Leon举报憨憨的小于求助涉嫌违规
2秒前
Ava应助happy采纳,获得10
3秒前
3秒前
点点完成签到,获得积分10
3秒前
3秒前
messi完成签到,获得积分20
6秒前
7秒前
7秒前
7秒前
8秒前
开心快乐发大财关注了科研通微信公众号
8秒前
sanmu完成签到,获得积分20
8秒前
健忘的牛排完成签到,获得积分10
9秒前
ryan发布了新的文献求助10
9秒前
烟花应助陈丹丹采纳,获得10
9秒前
西门亿先完成签到,获得积分10
11秒前
糖葫芦完成签到,获得积分10
11秒前
11秒前
一只猫发布了新的文献求助10
12秒前
yisa发布了新的文献求助10
12秒前
今后应助不安的猫咪采纳,获得10
12秒前
12秒前
旱钮发布了新的文献求助10
15秒前
haosu应助七七八八采纳,获得10
15秒前
Sherry发布了新的文献求助10
17秒前
HEIKU应助ryan采纳,获得10
17秒前
Jimmy发布了新的文献求助10
17秒前
happy发布了新的文献求助10
17秒前
所所应助huanhuan采纳,获得10
19秒前
DPF做梦的乌龟完成签到,获得积分10
21秒前
按揭发布了新的文献求助10
22秒前
万能图书馆应助yy采纳,获得10
25秒前
25秒前
29秒前
29秒前
21完成签到 ,获得积分10
30秒前
31秒前
ryan完成签到,获得积分10
31秒前
penny0000发布了新的文献求助10
32秒前
高分求助中
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 520
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464515
求助须知:如何正确求助?哪些是违规求助? 3057886
关于积分的说明 9058991
捐赠科研通 2748051
什么是DOI,文献DOI怎么找? 1507688
科研通“疑难数据库(出版商)”最低求助积分说明 696632
邀请新用户注册赠送积分活动 696256