An improved obstacle separation method using deep learning for object detection and tracking in a hybrid visual control loop for fruit picking in clusters

障碍物 人工智能 计算机视觉 阈值 过程(计算) 计算机科学 目标检测 机器视觉 分离(统计) 阻力 跟踪(教育) 工程类 图像(数学) 模式识别(心理学) 机器学习 航空航天工程 法学 操作系统 教育学 政治学 心理学
作者
Ya Xiong,Yuanyue Ge,Pål Johan From
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:191: 106508-106508 被引量:19
标识
DOI:10.1016/j.compag.2021.106508
摘要

Selectively picking a target fruit surrounded by obstacles remains a challenge for fruit harvesting robots. This paper presents improvements to the active obstacle separation method for strawberry picking in clusters. A faster and more accurate vision system was developed that combined two neural networks and color thresholding for real-time detection, tracking and localization of strawberries. We propose an improved active obstacle separation method that used a push and a drag-push operation to separate the obstacles from the target in three stages. The push and drag vectors were simplified and precisely calculated based on the exact locations of obstacles. Also, different from many systems that only “looked” once for the entire picking process, the new system used a hybrid vision-based control method. In stage 1, the push operation was controlled by a simple closed-loop vision at two key points. In stages 2 and 3, the vision system re-perceived the environment to update the target and obstacle information before each round of drag-push movements. Field evaluation showed that the proposed method was more precise to separate the obstacles without reducing the speed, increasing the whole process success rate to 62.4% in clusters on the “Murano” strawberry cultivator that was 36.8% higher than the previous work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助后知后觉采纳,获得10
刚刚
刚刚
刚刚
科研通AI2S应助Chem is try采纳,获得10
刚刚
1秒前
a方舟发布了新的文献求助10
1秒前
寒冷书竹发布了新的文献求助10
1秒前
1秒前
hhh发布了新的文献求助10
1秒前
顾矜应助富婆嘉嘉子采纳,获得10
1秒前
1秒前
1秒前
2秒前
江风海韵完成签到,获得积分10
2秒前
火星上的从雪完成签到,获得积分10
2秒前
在水一方应助kai采纳,获得10
2秒前
打打应助留胡子的青柏采纳,获得10
3秒前
3秒前
zhanghw发布了新的文献求助10
3秒前
Frank完成签到,获得积分10
3秒前
桐桐应助小喵采纳,获得10
3秒前
香蕉觅云应助执笔客采纳,获得10
3秒前
light完成签到 ,获得积分10
3秒前
你仔细听完成签到,获得积分10
4秒前
4秒前
Sailzyf完成签到,获得积分10
4秒前
抓恐龙发布了新的文献求助10
4秒前
4秒前
汉堡包应助言小采纳,获得10
5秒前
Chen发布了新的文献求助10
5秒前
lql233完成签到,获得积分20
5秒前
雪白问兰完成签到 ,获得积分10
5秒前
5秒前
魅力蜗牛完成签到,获得积分10
5秒前
5秒前
upup小李完成签到 ,获得积分10
6秒前
手帕很忙完成签到,获得积分10
6秒前
害羞含雁发布了新的文献求助10
6秒前
6秒前
zp完成签到 ,获得积分10
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672