An improved obstacle separation method using deep learning for object detection and tracking in a hybrid visual control loop for fruit picking in clusters

障碍物 人工智能 计算机视觉 阈值 过程(计算) 计算机科学 目标检测 机器视觉 分离(统计) 阻力 跟踪(教育) 工程类 图像(数学) 模式识别(心理学) 机器学习 航空航天工程 法学 操作系统 教育学 政治学 心理学
作者
Ya Xiong,Yuanyue Ge,Pål Johan From
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:191: 106508-106508 被引量:19
标识
DOI:10.1016/j.compag.2021.106508
摘要

Selectively picking a target fruit surrounded by obstacles remains a challenge for fruit harvesting robots. This paper presents improvements to the active obstacle separation method for strawberry picking in clusters. A faster and more accurate vision system was developed that combined two neural networks and color thresholding for real-time detection, tracking and localization of strawberries. We propose an improved active obstacle separation method that used a push and a drag-push operation to separate the obstacles from the target in three stages. The push and drag vectors were simplified and precisely calculated based on the exact locations of obstacles. Also, different from many systems that only “looked” once for the entire picking process, the new system used a hybrid vision-based control method. In stage 1, the push operation was controlled by a simple closed-loop vision at two key points. In stages 2 and 3, the vision system re-perceived the environment to update the target and obstacle information before each round of drag-push movements. Field evaluation showed that the proposed method was more precise to separate the obstacles without reducing the speed, increasing the whole process success rate to 62.4% in clusters on the “Murano” strawberry cultivator that was 36.8% higher than the previous work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
火星上藏鸟完成签到,获得积分10
刚刚
刚刚
wangxuan完成签到,获得积分10
1秒前
1秒前
Orange应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
ludong_0应助科研通管家采纳,获得10
2秒前
2秒前
缓慢如南应助科研通管家采纳,获得10
2秒前
缓慢如南应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
ludong_0应助科研通管家采纳,获得10
2秒前
缓慢如南应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
2秒前
古往今来应助科研通管家采纳,获得20
3秒前
ding应助科研通管家采纳,获得50
3秒前
李健应助科研通管家采纳,获得30
3秒前
F503完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
哆啦豆豆关注了科研通微信公众号
3秒前
语青发布了新的文献求助10
4秒前
好好工作完成签到,获得积分20
4秒前
星星完成签到,获得积分10
5秒前
嘿嘿嘿发布了新的文献求助10
5秒前
小徐801完成签到,获得积分10
5秒前
吴向宽发布了新的文献求助10
5秒前
maz123456发布了新的文献求助10
5秒前
5秒前
CodeCraft应助乐观若烟采纳,获得30
5秒前
N型半导体发布了新的文献求助10
5秒前
erhan7发布了新的文献求助10
5秒前
6秒前
华仔应助CC采纳,获得10
6秒前
可飞完成签到,获得积分10
6秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582