材料科学
三嗪
阳极
共价键
电化学
噻吩
复合数
锂(药物)
Stille反应
氧化还原
化学工程
高分子化学
聚合物
有机化学
电极
复合材料
化学
物理化学
冶金
内分泌学
工程类
医学
作者
Shuang Chen,Shukun Wang,Xin Xue,Jinsheng Zhao,Hongmei Du
出处
期刊:Polymers
[MDPI AG]
日期:2021-09-27
卷期号:13 (19): 3300-3300
被引量:9
标识
DOI:10.3390/polym13193300
摘要
As a class of redox active materials with some preferable properties, including rigid structure, insoluble characters, and large amounts of nitrogen atoms, covalent triazine frameworks (CTFs) have been frequently adopted as electrode materials in Lithium-ion batteries (LIBs). Herein, a triazine-based covalent organic framework employing 3,4-ethylenedioxythiophene (EDOT) as the bridging unit is synthesized by the presence of carbon powder through Stille coupling reaction. The carbon powder was added in an in-situ manner to overcome the low intrinsic conductivity of the polymer, which led to the formation of the polymer@C composite (PTT-O@C, PTT-O is a type of CTFs). The composite material is then employed in LIBs as anode material. The designed polymer shows a narrow band gap of 1.84 eV, proving the effectiveness of the nitrogen-enriched triazine unit in reducing the band gap of the resultant polymers. The CV results showed that the redox potential of the composite (vs. Li/Li+) is around 1.0 V, which makes it suitable to be used as the anode material in lithium-ion batteries. The composite material could exhibit the stable specific capacity of 645 mAh/g at 100 mA/g and 435 mAh/g at 500 mA/g, respectively, much higher than the pure carbon materials, indicating the good reversibility of the material. This work provides some additional information on electrochemical performance of the triazine and EDOT based CTFs, which is helpful for developing a deep understanding of the structure–performance correlations of the CTFs as anode materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI