清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Unsupervised semantic-aware adaptive feature fusion network for arrhythmia detection

模式识别(心理学) 机器学习 特征(语言学) 特征提取 特征选择 融合 聚类分析 分类器(UML) 数据挖掘
作者
Panpan Feng,Jie Fu,Zhaoyang Ge,Haiyan Wang,Yanjie Zhou,Bing Zhou,Zongmin Wang
出处
期刊:Information Sciences [Elsevier BV]
卷期号:582: 509-528 被引量:2
标识
DOI:10.1016/j.ins.2021.09.046
摘要

Abstract An electrocardiogram (ECG) consists of complex P-QRS-T waves. Detecting long-term ECG recordings is time-consuming and error-prone for cardiologists . Deep neural networks (DNNs) can learn deep representations and empower automatic arrhythmia detection. However, when applying DNNs in practice, they usually suffer from domain shift that exits between the training data and testing data. Such shift can be caused by the high variability contained in ECG signals between patients and internal-variability of heartbeats for same patients, leading to degrading performance and impeding generalization of DNNs. To tackle this problem, we propose an unsupervised semantic-aware adaptive feature fusion network (USAFFN) to reduce such shift by alleviating the semantic distribution discrepancy between the feature spaces of two domains. Furthermore, an ECG contains rich information from different angles (beat, rhythm, and frequency levels), which is essential for arrhythmia detection. Therefore, a multi-perspective adaptive feature fusion (MPAFF) module is introduced to extract informative ECG representations. The experimental results show that the detection performance of our approach is highly competitive with the upper bound of alternative methods on the ARDB, and the generalization is confirmed on the INCART and LTDB.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘丰完成签到 ,获得积分10
1秒前
John完成签到 ,获得积分10
17秒前
Gary完成签到 ,获得积分10
20秒前
蒲蒲完成签到 ,获得积分10
22秒前
35秒前
小婷君发布了新的文献求助30
40秒前
小巧的柏柳完成签到 ,获得积分10
45秒前
46秒前
雪山飞龙完成签到,获得积分10
47秒前
陈_Ccc完成签到 ,获得积分10
48秒前
Rayoo发布了新的文献求助10
51秒前
wanci应助幽默滑板采纳,获得10
55秒前
小婷君完成签到,获得积分10
56秒前
56秒前
59秒前
医学僧发布了新的文献求助10
1分钟前
老刘完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
幽默滑板完成签到,获得积分10
1分钟前
迪鸣完成签到,获得积分0
1分钟前
2分钟前
路过完成签到 ,获得积分10
2分钟前
笨笨完成签到 ,获得积分10
2分钟前
chichenglin完成签到 ,获得积分10
2分钟前
racill完成签到 ,获得积分10
2分钟前
xiaosang0619完成签到,获得积分10
2分钟前
彩色的芷容完成签到 ,获得积分10
2分钟前
fogsea完成签到,获得积分0
2分钟前
合适醉蝶完成签到 ,获得积分10
3分钟前
zhaoyu完成签到 ,获得积分10
3分钟前
LeoBigman完成签到 ,获得积分10
3分钟前
myq完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
DJ_Tokyo完成签到,获得积分10
3分钟前
平淡访冬完成签到 ,获得积分10
3分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3949990
求助须知:如何正确求助?哪些是违规求助? 3495262
关于积分的说明 11076012
捐赠科研通 3225837
什么是DOI,文献DOI怎么找? 1783275
邀请新用户注册赠送积分活动 867584
科研通“疑难数据库(出版商)”最低求助积分说明 800839