恩替卡韦
医学
肝细胞癌
内科学
队列
肝硬化
慢性肝炎
弗雷明翰风险评分
风险模型
胃肠病学
替诺福韦
肿瘤科
乙型肝炎
免疫学
疾病
人类免疫缺陷病毒(HIV)
病毒
拉米夫定
风险分析(工程)
作者
Hwi Young Kim,Pietro Lampertico,Joon Yeul Nam,Hyung‐Chul Lee,Seung Up Kim,Dong Hyun Sinn,Yeon Seok Seo,Han Ah Lee,Soo Young Park,Young‐Suk Lim,Eun Sun Jang,Eileen L. Yoon,Hyoung Su Kim,Sung Eun Kim,Sang Bong Ahn,Jae‐Jun Shim,Soung Won Jeong,Yong Jin Jung,Joo Hyun Sohn,Yong Kyun Cho,Sang Bong Ahn,George Ν. Dalekos,Ramazan İdilman,Vana Sypsa,Thomas Berg,Marı́a Buti,José Luís Calleja,John Goulis,Spilios Manolakopoulos,Harry L.A. Janssen,Myoung‐jin Jang,Yun Bin Lee,Yoon Jun Kim,Jung‐Hwan Yoon,George Papatheodoridis,Jeong‐Hoon Lee
标识
DOI:10.1016/j.jhep.2021.09.025
摘要
•A new HCC prediction model (PLAN-B) was developed using machine learning algorithms in antiviral-treated patients with chronic hepatitis B. •The utility of the model was validated in independent Korean and Caucasian cohorts. •PLAN-B comprises 10 baseline parameters: cirrhosis, age, platelet count, ETV/TDF, sex, serum ALT and HBV DNA, albumin and bilirubin levels, and HBeAg status. •The PLAN-B model demonstrated satisfactory predictive performance for HCC development and outperformed other risk scores. Background & Aims Several models have recently been developed to predict risk of hepatocellular carcinoma (HCC) in patients with chronic hepatitis B (CHB). Our aims were to develop and validate an artificial intelligence-assisted prediction model of HCC risk. Methods Using a gradient-boosting machine (GBM) algorithm, a model was developed using 6,051 patients with CHB who received entecavir or tenofovir therapy from 4 hospitals in Korea. Two external validation cohorts were independently established: Korean (5,817 patients from 14 Korean centers) and Caucasian (1,640 from 11 Western centers) PAGE-B cohorts. The primary outcome was HCC development. Results In the derivation cohort and the 2 validation cohorts, cirrhosis was present in 26.9%–50.2% of patients at baseline. A model using 10 parameters at baseline was derived and showed good predictive performance (c-index 0.79). This model showed significantly better discrimination than previous models (PAGE-B, modified PAGE-B, REACH-B, and CU-HCC) in both the Korean (c-index 0.79 vs. 0.64–0.74; all p <0.001) and Caucasian validation cohorts (c-index 0.81 vs. 0.57–0.79; all p <0.05 except modified PAGE-B, p = 0.42). A calibration plot showed a satisfactory calibration function. When the patients were grouped into 4 risk groups, the minimal-risk group (11.2% of the Korean cohort and 8.8% of the Caucasian cohort) had a less than 0.5% risk of HCC during 8 years of follow-up. Conclusions This GBM-based model provides the best predictive power for HCC risk in Korean and Caucasian patients with CHB treated with entecavir or tenofovir. Lay summary Risk scores have been developed to predict the risk of hepatocellular carcinoma (HCC) in patients with chronic hepatitis B. We developed and validated a new risk prediction model using machine learning algorithms in 13,508 antiviral-treated patients with chronic hepatitis B. Our new model, based on 10 common baseline characteristics, demonstrated superior performance in risk stratification compared with previous risk scores. This model also identified a group of patients at minimal risk of developing HCC, who could be indicated for less intensive HCC surveillance. Several models have recently been developed to predict risk of hepatocellular carcinoma (HCC) in patients with chronic hepatitis B (CHB). Our aims were to develop and validate an artificial intelligence-assisted prediction model of HCC risk. Using a gradient-boosting machine (GBM) algorithm, a model was developed using 6,051 patients with CHB who received entecavir or tenofovir therapy from 4 hospitals in Korea. Two external validation cohorts were independently established: Korean (5,817 patients from 14 Korean centers) and Caucasian (1,640 from 11 Western centers) PAGE-B cohorts. The primary outcome was HCC development. In the derivation cohort and the 2 validation cohorts, cirrhosis was present in 26.9%–50.2% of patients at baseline. A model using 10 parameters at baseline was derived and showed good predictive performance (c-index 0.79). This model showed significantly better discrimination than previous models (PAGE-B, modified PAGE-B, REACH-B, and CU-HCC) in both the Korean (c-index 0.79 vs. 0.64–0.74; all p <0.001) and Caucasian validation cohorts (c-index 0.81 vs. 0.57–0.79; all p <0.05 except modified PAGE-B, p = 0.42). A calibration plot showed a satisfactory calibration function. When the patients were grouped into 4 risk groups, the minimal-risk group (11.2% of the Korean cohort and 8.8% of the Caucasian cohort) had a less than 0.5% risk of HCC during 8 years of follow-up. This GBM-based model provides the best predictive power for HCC risk in Korean and Caucasian patients with CHB treated with entecavir or tenofovir.