An artificial intelligence model to predict hepatocellular carcinoma risk in Korean and Caucasian patients with chronic hepatitis B

恩替卡韦 医学 肝细胞癌 内科学 队列 肝硬化 慢性肝炎 弗雷明翰风险评分 风险模型 胃肠病学 肿瘤科 乙型肝炎 免疫学 疾病 病毒 风险分析(工程) 拉米夫定
作者
Hwi Young Kim,Pietro Lampertico,Joon Yeul Nam,Hyung‐Chul Lee,Seung Up Kim,Dong Hyun Sinn,Yeon Seok Seo,Han Ah Lee,Soo Young Park,Young‐Suk Lim,Eun Sun Jang,Eileen L. Yoon,Hyoung Su Kim,Sung Eun Kim,Sang Bong Ahn,Jae‐Jun Shim,Soung Won Jeong,Yong Jin Jung,Joo Hyun Sohn,Yong Kyun Cho
出处
期刊:Journal of Hepatology [Elsevier BV]
卷期号:76 (2): 311-318 被引量:106
标识
DOI:10.1016/j.jhep.2021.09.025
摘要

•A new HCC prediction model (PLAN-B) was developed using machine learning algorithms in antiviral-treated patients with chronic hepatitis B. •The utility of the model was validated in independent Korean and Caucasian cohorts. •PLAN-B comprises 10 baseline parameters: cirrhosis, age, platelet count, ETV/TDF, sex, serum ALT and HBV DNA, albumin and bilirubin levels, and HBeAg status. •The PLAN-B model demonstrated satisfactory predictive performance for HCC development and outperformed other risk scores. Background & Aims Several models have recently been developed to predict risk of hepatocellular carcinoma (HCC) in patients with chronic hepatitis B (CHB). Our aims were to develop and validate an artificial intelligence-assisted prediction model of HCC risk. Methods Using a gradient-boosting machine (GBM) algorithm, a model was developed using 6,051 patients with CHB who received entecavir or tenofovir therapy from 4 hospitals in Korea. Two external validation cohorts were independently established: Korean (5,817 patients from 14 Korean centers) and Caucasian (1,640 from 11 Western centers) PAGE-B cohorts. The primary outcome was HCC development. Results In the derivation cohort and the 2 validation cohorts, cirrhosis was present in 26.9%–50.2% of patients at baseline. A model using 10 parameters at baseline was derived and showed good predictive performance (c-index 0.79). This model showed significantly better discrimination than previous models (PAGE-B, modified PAGE-B, REACH-B, and CU-HCC) in both the Korean (c-index 0.79 vs. 0.64–0.74; all p <0.001) and Caucasian validation cohorts (c-index 0.81 vs. 0.57–0.79; all p <0.05 except modified PAGE-B, p = 0.42). A calibration plot showed a satisfactory calibration function. When the patients were grouped into 4 risk groups, the minimal-risk group (11.2% of the Korean cohort and 8.8% of the Caucasian cohort) had a less than 0.5% risk of HCC during 8 years of follow-up. Conclusions This GBM-based model provides the best predictive power for HCC risk in Korean and Caucasian patients with CHB treated with entecavir or tenofovir. Lay summary Risk scores have been developed to predict the risk of hepatocellular carcinoma (HCC) in patients with chronic hepatitis B. We developed and validated a new risk prediction model using machine learning algorithms in 13,508 antiviral-treated patients with chronic hepatitis B. Our new model, based on 10 common baseline characteristics, demonstrated superior performance in risk stratification compared with previous risk scores. This model also identified a group of patients at minimal risk of developing HCC, who could be indicated for less intensive HCC surveillance. Several models have recently been developed to predict risk of hepatocellular carcinoma (HCC) in patients with chronic hepatitis B (CHB). Our aims were to develop and validate an artificial intelligence-assisted prediction model of HCC risk. Using a gradient-boosting machine (GBM) algorithm, a model was developed using 6,051 patients with CHB who received entecavir or tenofovir therapy from 4 hospitals in Korea. Two external validation cohorts were independently established: Korean (5,817 patients from 14 Korean centers) and Caucasian (1,640 from 11 Western centers) PAGE-B cohorts. The primary outcome was HCC development. In the derivation cohort and the 2 validation cohorts, cirrhosis was present in 26.9%–50.2% of patients at baseline. A model using 10 parameters at baseline was derived and showed good predictive performance (c-index 0.79). This model showed significantly better discrimination than previous models (PAGE-B, modified PAGE-B, REACH-B, and CU-HCC) in both the Korean (c-index 0.79 vs. 0.64–0.74; all p <0.001) and Caucasian validation cohorts (c-index 0.81 vs. 0.57–0.79; all p <0.05 except modified PAGE-B, p = 0.42). A calibration plot showed a satisfactory calibration function. When the patients were grouped into 4 risk groups, the minimal-risk group (11.2% of the Korean cohort and 8.8% of the Caucasian cohort) had a less than 0.5% risk of HCC during 8 years of follow-up. This GBM-based model provides the best predictive power for HCC risk in Korean and Caucasian patients with CHB treated with entecavir or tenofovir.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助酷酷行天采纳,获得10
刚刚
刚刚
SciGPT应助xly采纳,获得10
刚刚
科研小助完成签到,获得积分10
刚刚
时尚半仙发布了新的文献求助10
刚刚
专注大门完成签到,获得积分10
1秒前
1秒前
花非花雾非雾完成签到,获得积分10
1秒前
Lynn发布了新的文献求助10
2秒前
majiko完成签到,获得积分10
2秒前
3秒前
3秒前
共享精神应助静85采纳,获得10
3秒前
宇宙少女完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
5秒前
5秒前
乔垣结衣发布了新的文献求助10
6秒前
6秒前
顾矜应助鳗鱼飞松采纳,获得10
6秒前
跳跳妈妈发布了新的文献求助30
7秒前
7秒前
lanxixi完成签到,获得积分10
7秒前
sc完成签到,获得积分10
7秒前
清河海风完成签到,获得积分10
7秒前
naturehome完成签到,获得积分10
8秒前
8秒前
小蘑菇应助124578采纳,获得10
8秒前
shirley完成签到,获得积分10
8秒前
mumu发布了新的文献求助10
9秒前
Link完成签到,获得积分20
9秒前
yar应助可爱香槟采纳,获得10
9秒前
Hello应助东风采纳,获得10
9秒前
蟹浦肉完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
Link发布了新的文献求助30
10秒前
10秒前
Sakura完成签到,获得积分20
11秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978526
求助须知:如何正确求助?哪些是违规求助? 3522634
关于积分的说明 11214133
捐赠科研通 3260065
什么是DOI,文献DOI怎么找? 1799744
邀请新用户注册赠送积分活动 878642
科研通“疑难数据库(出版商)”最低求助积分说明 807002