Reconstruction of irregular missing seismic data using conditional generative adversarial networks

鉴别器 缺少数据 计算机科学 插值(计算机图形学) 数据集 试验装置 集合(抽象数据类型) 试验数据 发电机(电路理论) 噪音(视频) 训练集 合成数据 模式识别(心理学) 高斯分布 生成对抗网络 人工神经网络 深度学习 人工智能 数据挖掘 机器学习 图像(数学) 物理 功率(物理) 探测器 程序设计语言 电信 量子力学
作者
Qing Wei,Xiang‐Yang Li,Mingpeng Song
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:86 (6): V471-V488 被引量:13
标识
DOI:10.1190/geo2020-0644.1
摘要

During acquisition, due to economic and natural reasons, irregular missing seismic data are always observed. To improve accuracy in subsequent processing, the missing data should be interpolated. A conditional generative adversarial network (cGAN) consisting of two networks, a generator and a discriminator, is a deep-learning model that can be used to interpolate the missing data. However, because cGAN is typically data set oriented, the trained network is unable to interpolate a data set from an area different from that of the training data set. We design a cGAN based on Pix2Pix GAN to interpolate irregular missing seismic data. A synthetic data set synthesized from two models is used to train the network. Furthermore, we add a Gaussian-noise layer in the discriminator to fix a vanishing gradient, allowing us to train a more powerful generator. Two synthetic data sets synthesized by two new geologic models and two field data sets are used to test the trained cGAN. The test results and the calculated recovered signal-to-noise ratios indicate that although the cGAN is trained using synthetic data, the network can reconstruct irregular missing field seismic data with high accuracy using the Gaussian-noise layer. We test the performances of cGANs trained with different patch sizes in the discriminator to determine the best structure, and we train the networks using different training data sets for different missing rates, demonstrating the best training data set. Compared with conventional methods, the cGAN-based interpolation method does not need different parameter selections for different data sets to obtain the best interpolation data. Furthermore, it is also an efficient technique as the cost is because of the training, and after training, the processing time is negligible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Charles完成签到,获得积分10
刚刚
刚刚
汉堡包应助聪慧芷巧采纳,获得10
1秒前
1秒前
Ray发布了新的文献求助10
1秒前
思源应助CCCr采纳,获得10
1秒前
白鸽鸽完成签到,获得积分10
2秒前
小夏完成签到,获得积分10
2秒前
LLLzg发布了新的文献求助50
2秒前
向雨竹发布了新的文献求助10
2秒前
妩媚的新波完成签到,获得积分10
3秒前
阔达的涵梅完成签到,获得积分10
3秒前
anne完成签到 ,获得积分10
3秒前
Inter09发布了新的文献求助10
3秒前
Starry完成签到,获得积分10
3秒前
drsquall发布了新的文献求助10
4秒前
Joan_89驳回了ww应助
4秒前
4秒前
连山守护应助dff采纳,获得10
4秒前
现代的傻姑完成签到,获得积分20
5秒前
比比完成签到,获得积分10
6秒前
852应助Sumeru采纳,获得10
6秒前
充电宝应助林深时见鹿采纳,获得10
6秒前
7秒前
英吉利25发布了新的文献求助10
7秒前
研友_VZG7GZ应助Kikua采纳,获得30
7秒前
8秒前
ark861023发布了新的文献求助10
8秒前
上官若男应助mike采纳,获得10
8秒前
桀桀桀发布了新的文献求助10
8秒前
小小咸鱼完成签到 ,获得积分10
9秒前
好运吗喽完成签到,获得积分10
10秒前
10秒前
Tourist应助Jankin采纳,获得10
10秒前
CodeCraft应助Lucien采纳,获得10
10秒前
Allen完成签到 ,获得积分10
11秒前
盛事不朽完成签到 ,获得积分10
11秒前
哈哈哈发布了新的文献求助30
11秒前
12秒前
H与K完成签到,获得积分10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950817
求助须知:如何正确求助?哪些是违规求助? 3496247
关于积分的说明 11080980
捐赠科研通 3226673
什么是DOI,文献DOI怎么找? 1783954
邀请新用户注册赠送积分活动 867992
科研通“疑难数据库(出版商)”最低求助积分说明 800993