Reconstruction of irregular missing seismic data using conditional generative adversarial networks

鉴别器 缺少数据 计算机科学 插值(计算机图形学) 数据集 试验装置 集合(抽象数据类型) 试验数据 发电机(电路理论) 噪音(视频) 训练集 合成数据 模式识别(心理学) 高斯分布 生成对抗网络 人工神经网络 深度学习 人工智能 数据挖掘 机器学习 图像(数学) 物理 功率(物理) 探测器 程序设计语言 电信 量子力学
作者
Qing Wei,Xiang‐Yang Li,Mingpeng Song
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:86 (6): V471-V488 被引量:13
标识
DOI:10.1190/geo2020-0644.1
摘要

During acquisition, due to economic and natural reasons, irregular missing seismic data are always observed. To improve accuracy in subsequent processing, the missing data should be interpolated. A conditional generative adversarial network (cGAN) consisting of two networks, a generator and a discriminator, is a deep-learning model that can be used to interpolate the missing data. However, because cGAN is typically data set oriented, the trained network is unable to interpolate a data set from an area different from that of the training data set. We design a cGAN based on Pix2Pix GAN to interpolate irregular missing seismic data. A synthetic data set synthesized from two models is used to train the network. Furthermore, we add a Gaussian-noise layer in the discriminator to fix a vanishing gradient, allowing us to train a more powerful generator. Two synthetic data sets synthesized by two new geologic models and two field data sets are used to test the trained cGAN. The test results and the calculated recovered signal-to-noise ratios indicate that although the cGAN is trained using synthetic data, the network can reconstruct irregular missing field seismic data with high accuracy using the Gaussian-noise layer. We test the performances of cGANs trained with different patch sizes in the discriminator to determine the best structure, and we train the networks using different training data sets for different missing rates, demonstrating the best training data set. Compared with conventional methods, the cGAN-based interpolation method does not need different parameter selections for different data sets to obtain the best interpolation data. Furthermore, it is also an efficient technique as the cost is because of the training, and after training, the processing time is negligible.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lsl发布了新的文献求助10
刚刚
1秒前
ksduoiwex完成签到,获得积分10
1秒前
2秒前
小马甲应助飞快的逊采纳,获得10
3秒前
晴心发布了新的文献求助10
4秒前
月亮啊完成签到 ,获得积分10
6秒前
Jupiter 1234发布了新的文献求助10
6秒前
小酒窝完成签到,获得积分10
6秒前
CodeCraft应助玛卡巴卡采纳,获得10
6秒前
夏天的风完成签到,获得积分10
6秒前
6秒前
坦率水香发布了新的文献求助10
7秒前
清新的梦桃完成签到,获得积分10
7秒前
yanjiusheng完成签到,获得积分10
9秒前
领导范儿应助zhangxin采纳,获得10
11秒前
111发布了新的文献求助10
11秒前
ksduoiwex发布了新的文献求助10
12秒前
上官若男应助晴心采纳,获得30
14秒前
LX完成签到 ,获得积分10
15秒前
19秒前
Jupiter 1234完成签到,获得积分10
20秒前
20秒前
win发布了新的文献求助10
21秒前
麻辣鱼鳞关注了科研通微信公众号
23秒前
郑小七完成签到,获得积分10
23秒前
领导范儿应助YJH采纳,获得10
24秒前
24秒前
圆听听发布了新的文献求助10
25秒前
xxyy完成签到,获得积分20
25秒前
iOhyeye23完成签到 ,获得积分10
26秒前
26秒前
张张完成签到,获得积分10
26秒前
xingyong完成签到,获得积分10
26秒前
GY00完成签到 ,获得积分10
27秒前
玛卡巴卡完成签到 ,获得积分10
28秒前
31秒前
xingyong发布了新的文献求助10
31秒前
lixiao完成签到,获得积分10
31秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565327
求助须知:如何正确求助?哪些是违规求助? 4650317
关于积分的说明 14690672
捐赠科研通 4592233
什么是DOI,文献DOI怎么找? 2519494
邀请新用户注册赠送积分活动 1491964
关于科研通互助平台的介绍 1463183