材料科学
兴奋剂
钒
二硒化钨
半导体
光电子学
过渡金属
杂质
凝聚态物理
纳米技术
场效应晶体管
晶体管
掺杂剂
电气工程
冶金
物理
工程类
催化作用
电压
有机化学
化学
生物化学
作者
Azimkhan Kozhakhmetov,Samuel Stolz,Anne Marie Z. Tan,Rahul Pendurthi,Saiphaneendra Bachu,Furkan Türker,Nasim Alem,Jessica Kachian,Saptarshi Das,Richard G. Hennig,Oliver Gröning,Bruno Schuler,Joshua A. Robinson
标识
DOI:10.1002/adfm.202105252
摘要
Scalable substitutional doping of two-dimensional (2D) transition metal dichalcogenides (TMDCs) is a prerequisite to developing next-generation logic and memory devices based on 2D materials. To date, doping efforts are still nascent. Here, we report scalable growth and vanadium (V) doping of 2D WSe2 at front-end-of-line (FEOL) and back-end-of-line (BEOL) compatible temperatures of 800 {\deg}C and 400 {\deg}C, respectively. A combination of experimental and theoretical studies confirm that vanadium atoms substitutionally replace tungsten in WSe2, which results in p-type doping via the introduction of discrete defect levels that lie close to the valence band maxima. The p-type nature of the V dopants is further verified by constructed field-effect transistors, where hole conduction becomes dominant with increasing vanadium concentration. Hence, our study presents a method to precisely control the density of intentionally introduced impurities, which is indispensable in the production of electronic-grade wafer-scale extrinsic 2D semiconductors.
科研通智能强力驱动
Strongly Powered by AbleSci AI