Comprehensive Study of Lithium Adsorption and Diffusion on Janus Mo/WXY (X, Y = S, Se, Te) Using First-Principles and Machine Learning Approaches

杰纳斯 材料科学 吸附 锂(药物) 偶极子 扩散 Atom(片上系统) 密度泛函理论 过渡金属 化学物理 电子结构 粘结长度 物理化学 纳米技术 凝聚态物理 热力学 结晶学 计算化学 计算机科学 物理 化学 嵌入式系统 催化作用 量子力学 生物化学 内分泌学 医学 晶体结构
作者
Gracie Chaney,Akram Ibrahim,Fatih Ersan,Deniz Çakır,Can Ataca
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:13 (30): 36388-36406 被引量:90
标识
DOI:10.1021/acsami.1c05508
摘要

The structural asymmetry of two-dimensional (2D) Janus transition-metal dichalcogenides (TMDs) produces internal dipole moments that result in interesting electronic properties. These properties differ from the regular (symmetric) TMD structures that the Janus structures are derived from. In this study, we, first, examine adsorption and diffusion of a single Li atom on regular MX2 and Janus MXY (M = Mo, W; XY = S, Se, Te) TMD structures at various concentrations using first-principles calculations within density functional theory. Lithium adsorption energy and mobility differ on the top and bottom sides of each Janus material. The correlation between Li adsorption energy, charge transfer, and bond lengths at different coverage densities is carefully examined. To gain more physical insight and prepare for future investigations into regular TMD and Janus materials, we applied a supervised machine learning (ML) model that uses clusterwise linear regression to predict the adsorption energies of Li on top of 2D TMDs. We developed a universal representation with a few descriptors that take into account the intrinsic dipole moment and the electronic structure of regular and Janus 2D layers, the side where the adsorption takes place, and the concentration dependence of adatom doping. This representation can easily be generalized to be used for other impurities and 2D layer combinations, including alloys as well. At last, we focus on analyzing these structures as possible anodes in battery applications. We conducted Li diffusion, open-circuit voltage, and storage capacity simulations. We report that lithium atoms are found to easily migrate between transition-metal (Mo, W) top sites for each considered case, and in these respects, many of the examined Janus materials are comparable or superior to graphene and regular TMDs. In addition, we report that the side with higher electronegative chalcogen atoms is suitable for Li adsorption and only MoSSe and MoSeTe can be suitable for full coverage of Li atoms on the surface. Bilayer Li adsorption was hindered due to negative open-circuit voltage. Bilayer Janus structures are better suited for battery applications due to less volumetric expansion/contraction during the discharge/charge process and having higher storage capacity. Janus monolayers undergo a transition from semiconducting to metallic upon adsorption of a single Li ion, which would improve anode conductivity. The results imply that the examined Janus structures should perform well as electrodes in Li-ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
米粒发布了新的文献求助10
刚刚
刚刚
刚刚
zhuzhu完成签到,获得积分10
1秒前
懒洋洋发布了新的文献求助20
2秒前
2秒前
爆米花应助优美紫槐采纳,获得10
3秒前
Admiral完成签到 ,获得积分10
3秒前
5秒前
一个可爱的辰完成签到,获得积分10
5秒前
BioGO完成签到,获得积分10
5秒前
000蕊完成签到,获得积分10
6秒前
6秒前
7秒前
BDMAXPK完成签到,获得积分10
7秒前
丘比特应助三岁半采纳,获得10
9秒前
11秒前
11秒前
12秒前
深情的新儿完成签到,获得积分10
12秒前
13秒前
yly123完成签到,获得积分10
14秒前
14秒前
Betty完成签到 ,获得积分10
15秒前
现代的雪珍完成签到 ,获得积分20
16秒前
南枝焙雪发布了新的文献求助10
17秒前
悟空完成签到,获得积分10
17秒前
17秒前
17秒前
18秒前
18秒前
wangxiaoyating完成签到,获得积分10
19秒前
HJJHJH发布了新的文献求助10
19秒前
米粒完成签到,获得积分20
20秒前
Hello应助Echo采纳,获得20
20秒前
java发布了新的文献求助10
21秒前
leezz完成签到,获得积分10
22秒前
阿豪发布了新的文献求助10
23秒前
林由夕完成签到,获得积分20
24秒前
研友_5ZlY68发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606214
求助须知:如何正确求助?哪些是违规求助? 4690656
关于积分的说明 14864955
捐赠科研通 4704298
什么是DOI,文献DOI怎么找? 2542488
邀请新用户注册赠送积分活动 1508024
关于科研通互助平台的介绍 1472232