Deep-AVPpred: Artificial Intelligence Driven Discovery of Peptide Drugs for Viral Infections

深度学习 生物信息学 人工智能 计算机科学 化学信息学 分类器(UML) 病毒学 计算生物学 生物 机器学习 生物化学 生物信息学 基因
作者
Ritesh Sharma,Sameer Shrivastava,Sanjay Kumar Singh,Abhinav Kumar,Amit Kumar Singh,Sonal Saxena
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (10): 5067-5074 被引量:35
标识
DOI:10.1109/jbhi.2021.3130825
摘要

Rapid increase in viral outbreaks has resulted in the spread of viral diseases in diverse species and across geographical boundaries. The zoonotic viral diseases have greatly affected the well-being of humans, and the COVID-19 pandemic is a burning example. The existing antivirals have low efficacy, severe side effects, high toxicity, and limited market availability. As a result, natural substances have been tested for antiviral activity. The host defense molecules like antiviral peptides (AVPs) are present in plants and animals and protect them from invading viruses. However, obtaining AVPs from natural sources for preparing synthetic peptide drugs is expensive and time-consuming. As a result, an in-silico model is required for identifying new AVPs. We proposed Deep-AVPpred, a deep learning classifier for discovering AVPs in protein sequences, which utilises the concept of transfer learning with a deep learning algorithm. The proposed classifier outperformed state-of-the-art classifiers and achieved approximately 94% and 93% precision on validation and test sets, respectively. The high precision indicates that Deep-AVPpred can be used to propose new AVPs for synthesis and experimentation. By utilising Deep-AVPpred, we identified novel AVPs in human interferons- $\alpha$ family proteins. These AVPs can be chemically synthesised and experimentally verified for their antiviral activity against different viruses. The Deep-AVPpred is deployed as a web server and is made freely available at https://deep-avppred.anvil.app , which can be utilised to predict novel AVPs for developing antiviral compounds for use in human and veterinary medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
masterhu完成签到 ,获得积分10
刚刚
向雅完成签到,获得积分10
刚刚
baby完成签到,获得积分10
1秒前
我思故我在完成签到,获得积分0
2秒前
2秒前
sdnihbhew完成签到,获得积分10
3秒前
yiling发布了新的文献求助10
4秒前
qq完成签到 ,获得积分10
5秒前
绿萝完成签到,获得积分10
5秒前
Adler完成签到,获得积分10
5秒前
5秒前
田様应助夏之采纳,获得10
6秒前
zl739860884完成签到 ,获得积分10
7秒前
莫荆完成签到,获得积分10
7秒前
yangching完成签到,获得积分10
8秒前
ihonest完成签到,获得积分10
8秒前
hdd发布了新的文献求助30
10秒前
10秒前
HUZHAO完成签到,获得积分10
10秒前
英俊的铭应助yiling采纳,获得10
10秒前
科研小哥应助SunJc采纳,获得10
10秒前
朴实问筠完成签到 ,获得积分10
11秒前
qaplay完成签到 ,获得积分0
12秒前
宁阿霜完成签到,获得积分0
13秒前
BioZheng完成签到,获得积分10
14秒前
沙克几十块完成签到,获得积分10
14秒前
swing发布了新的文献求助10
15秒前
洪礼训完成签到,获得积分10
15秒前
执着乐双完成签到,获得积分10
16秒前
孝铮完成签到 ,获得积分10
16秒前
bozhe19890125发布了新的文献求助10
16秒前
大卡司完成签到,获得积分10
17秒前
19秒前
陈石头完成签到,获得积分10
19秒前
开心完成签到,获得积分10
20秒前
整齐的大开完成签到 ,获得积分10
20秒前
20秒前
搞怪柔完成签到,获得积分10
22秒前
曹中明完成签到,获得积分10
23秒前
莴苣完成签到,获得积分10
24秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167282
求助须知:如何正确求助?哪些是违规求助? 2818793
关于积分的说明 7922334
捐赠科研通 2478522
什么是DOI,文献DOI怎么找? 1320396
科研通“疑难数据库(出版商)”最低求助积分说明 632776
版权声明 602443