Development of a nomograph integrating radiomics and deep features based on MRI to predict the prognosis of high grade Gliomas

列线图 无线电技术 Lasso(编程语言) 深度学习 人工智能 医学 签名(拓扑) 特征选择 回归 队列 接收机工作特性 磁共振成像 模式识别(心理学) 放射科 计算机科学 肿瘤科 内科学 统计 数学 万维网 几何学
作者
Yutao Wang,Qian Shao,Shuying Luo,Randi Fu
出处
期刊:Mathematical Biosciences and Engineering [Arizona State University]
卷期号:18 (6): 8084-8095 被引量:6
标识
DOI:10.3934/mbe.2021401
摘要

The purpose of this study was to assess the overall survival of patients with HGG using a nomogram which combines the optimized radiomics with deep signatures extracted from 3D Magnetic Resonance Images (MRI) as well as clinical predictors. One training cohort of 168 HGG patients and one validation cohort of 42 HGG patients were enrolled in this study. From each patient's 3D MRI, 1284 radiomics features were extracted, and 8192 deep features were extracted via transfer learning. By using Least Absolute Shrinkage and Selection Operator (LASSO) regression to select features, the radiomics signatures and deep signatures were generated. The radiomics and deep features were then analyzed synthetically to generate a combined signature. Finally, the nomogram was developed by integrating the combined signature and clinical predictors. The radiomics and deep signatures were significantly associated with HGG patients' survival time. The signature derived from the synthesized radiomics and deep features showed a better prognostic performance than those from radiomics or deep features alone. The nomogram we developed takes the advantages of both radiomics and deep signatures, and also integrates the predictive ability of clinical indicators. The calibration curve shows our predicted survival time by the nomogram was very close to the actual time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
superji123123完成签到,获得积分10
刚刚
刚刚
称心寒松发布了新的文献求助10
1秒前
1秒前
jenningseastera应助M1o采纳,获得10
2秒前
清1031完成签到 ,获得积分20
3秒前
3秒前
研友_VZG7GZ应助林知鲸落采纳,获得10
4秒前
四月完成签到,获得积分10
4秒前
5秒前
老实莫言发布了新的文献求助10
6秒前
7秒前
7秒前
四月发布了新的文献求助10
9秒前
jasmine发布了新的文献求助10
10秒前
科研通AI5应助鹿夏之采纳,获得10
11秒前
12秒前
hui发布了新的文献求助10
12秒前
12秒前
科研通AI2S应助王欣采纳,获得10
12秒前
14秒前
wq完成签到,获得积分10
17秒前
FLO发布了新的文献求助10
18秒前
李健应助dnn_采纳,获得10
18秒前
18秒前
林知鲸落发布了新的文献求助10
19秒前
Hah完成签到,获得积分10
19秒前
科研通AI5应助hui采纳,获得10
20秒前
20秒前
Dog发布了新的文献求助30
20秒前
21秒前
23秒前
23秒前
iW完成签到 ,获得积分10
25秒前
25秒前
akun完成签到,获得积分10
25秒前
小廖完成签到,获得积分10
25秒前
隐形曼青应助zhangshenlan采纳,获得10
25秒前
FLO完成签到,获得积分20
27秒前
鹿夏之发布了新的文献求助10
27秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
中国化工新材料产业发展报告(2024年) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3762931
求助须知:如何正确求助?哪些是违规求助? 3307395
关于积分的说明 10139838
捐赠科研通 3022558
什么是DOI,文献DOI怎么找? 1659134
邀请新用户注册赠送积分活动 792378
科研通“疑难数据库(出版商)”最低求助积分说明 754943